
2023 MITRE eCTF
Design Documentation and Attack Approach

1st Dinko Dermendzhiev
Georgia Tech
Atlanta, U.S.

dinko.dermendzhiev@gatech.edu

2nd Katherine Paton-Smith
Georgia Tech
Atlanta, U.S.

kpatonsmith@gatech.edu

3rd Adith Devakonda
Georgia Tech
Atlanta, U.S.

adevakonda3@gatech.edu

4th Levi Doyle
Georgia Tech
Atlanta, U.S.

ldoyle9@gatech.edu

5th Lindsay Estrella
Georgia Tech
Atlanta, U.S.

lestrella7@gatech.edu

6th Veena Gonugondla
Georgia Tech
Atlanta, U.S.

vgonugondla3@gatech.edu

7th Ritvik Verma
Georgia Tech
Atlanta, U.S.

rverma83@gatech.edu

8th John Zhang
Georgia Tech
Atlanta, U.S.

jzhang3213@gatech.edu

Abstract—The 2023 MITRE Embedded CTF competition tasks
teams with developing two firmware builds: car and fob. This
document outlines the design decisions and implementation of
this firmware as it relates to a few important security measures.
In anticipation of the attack phase part of the competition,
Section III details the work completed thus far by the reverse
engineering sub-team.

I. BUILD ENVIRONMENT

The following software will be utilized on each machine as
part of the eCTF: Git, Docker, Python, Stellaris ICDI Drivers,
and UNIFLASH. Git, the open-source version control system,
allows for collaboration across the team on a single code base
while maintaining a history of edits. Docker will create the
environment in which the host tools execute by packaging
all of the tools with the required software. As it is used in
the provided eCTF tool repositories, the Python programming
language will be used for its powerful development capability.
The Texas Instruments TM4C123G LaunchPad Evaluation Kit
is the development board for this competition. It contains an
integrated In-Circuit Debug Interface (ICDI) to support the
programming and debugging of the hardware. As such, the
appropriate Stellaris ICDI Drivers are required. UNIFLASH
will be used to program the flash memory of the development
board.

II. FUNCTIONAL REQUIREMENTS

There are four tools to the design: enable, package, unlock,
and pair. They meet the functional requirements by implement-
ing: sending a packaged feature to a fob, creating a packaged
feature, listening for unlock messages from the car while
unlocking via button, and pairing an unpaired fob through a
paired fob, respectively.

III. DESIGN PHASE: SECURITY MEASURES

The following section describes the security goals and how
each will be met in the design.

A. A car should only unlock and start when the user has an
authentic fob that is paired with the car

Car and paired fob communications are encrypted using
the Advanced Encryption Standard (AES) in CTR mode. This
encryption protocol was chosen for both its relatively cheap
cost of computation and its security properties across repeated
messages.

An infamous difficulty, and potential vulnerability, with
symmetric key encryption is the process of key exchange
before any encryption ever occurs. If the protocol is compro-
mised at this step, via interception of the secret key by a third
party, any further encryption is insecure. To mitigate this in
the firmware design, the AES key is created and exchanged at
compile-time, thus the key is never transmitted in the open.

At a technical level, this is achieved via a Python script in
the ’car’ directory that generates a key, crafts a header file for
use by the firmware, and exchanges the key through a shared
JSON file. The script is run prior to compilation and utilizes
the ”secrets” Python library to instantiate the AES key. Then,
a similar Python script in the ’fob’ directory can access the
JSON file to create its own header file. The respective header
files then get compiled with each device build, and they are
accessible via direct reference in each firmware file.

Due to the nature of fob and car interactions, whereby the
same unlock message needs to be produced and transmitted
time and time again, CTR mode was chosen to ensure security
against replay attacks. In short, CTR (counter) mode generates
a new initialization vector for every piece of data that is en-
crypted and sent. This means that the probability of two cipher-
texts (encrypted messages) being identical is extremely low,
despite conveying the same plain-text (decrypted) messages.
To aid in the implementation of AES encryption, the ’tiny-
AES-c’ library by GitHub user ’kokke’ is included. It provides
the functions for standard encryption and decryption.

In the fob’s firmware, upon boot-up, the private key and the
unlock password are retrieved from secrets.h and the rand()
function is seeded with a pseudo-random value (SysTick) in



preparation of generating random IVs. Then, at each invo-
cation of the unlock() method, the fob generates a new IV,
computes the cipher-text, concatenates the two together, and
sends this encrypted message to the car via the established
UART connection. It is vital that the IV be communicated to
the car as the decryption process is simply a reflection of the
encryption process. It should be noted that it is safe to send
the IV over plain text because 1) it will never be used again
and 2) decryption without the key and under the assumption
of reason 1 is virtually impossible.

In the car’s firmware, once it receives a correct unlock
signal, it proceeds to parse out the IV and ciphertext from the
message buffer. It calls the exact same tiny-AES-c functions
to perform CTR decryption on the cipher-text. Finally, it
compares the input messages to it own copy, which was shared
through the same Python generation scripts referenced earlier.
If the sequence was successful, the car writes the last 64 bytes
of EEPROM to UART, which consists of data regarding the
enable features, and it calls the startCar method.

Looking forward, the only possible vulnerability in this
scenario that the team anticipates is the acquisition of the
secret key via memory forensics on the board’s EEPROM.
Methods and tools for packing and data obfuscation are being
explored.

B. Revoking an attacker’s physical access to a fob should also
revoke their ability to unlock the associated car

The design provided in sub-section A covers this security
requirement. Without access to the fob, an attacker would not
have access to the private AES key and thus will not be able
to accurately encrypt the unlock message. Furthermore, the
attacker would have to know the mode of encryption and
agreed-upon protocol for cipher-text formatting.

C. Observing the communications between a fob and a car
while unlocking should not allow an attacker to unlock the
car in the future

Previous unlock messages will not be able to be used in
the future due to the use of AES in CTR mode symmetric
encryption. As explained in sub-section A, this is because
initialization vectors are never reused. In other words, old
messages or communication between the car and the fob are
rendered useless and out of date. This synchronous counter
will make it hard for an attacker to recover any information
or patterns.

D. Having an unpaired fob should not allow an attacker to
unlock a car without a corresponding paired fob and pairing
PIN

Without the paired fob and its pairing PIN generated pre-
viously, an attacker will not have the private AES key to sign
messages. In addition, the PIN will not be stored in plain text
but rather encrypted for added security.

E. A car owner should not be able to add new features to a
fob that did not get packaged by the manufacturer

At the time of build, a secret key between the host and the
fob is created and shared with the fob. The host then uses this
key to encrypt any feature packages sent to the fob. The fob
can then decrypt this installation file and authenticate that it’s
from the manufacturer. Without the correct installation file, the
fob will not allow any modifications to be made as it can tell
that it was not made by the manufacturer.

Modeled after the gen secrets.py files for the car and fob,
a gen secrets.py file for the host was created to randomly
generate an AES key and save it to the secrets file. The host
Makefile was edited to run the gen secrets.py script. The
host key was added to the secrets of the fob in the fob’s
gen secrets.py file.

During testing, there were issues where the AES python
Library was outdated. Research indicated Pycryptodome is a
replacement library. When testing with the new library, there
was an issue where that the library was not recognized as
installed. To fix this, the line RUN pip install pycryptodome
was added into the docker file.

Initially, EAX mode was used in enable tool for the AES
key. The tiny-AES-c library implemented can encrypt and
decrypt in C but when a feature is enabled it is sent to the
fob in a python file. In other words, a python library was used
to encrypt the message from the host, but the code to receive
messages from host to the fob is in C. AES in the PyCrypto
library and tiny-AES-c work the same, but tiny-AES-c does
not have an EAX mode. So instead CTR mode is used for AES
encryption to match the mode used in decryption. Changes
include initializing a cipher and iv to implement CTR mode.

To send the encrypted feature package with the IV between
the host and the fob, the struct python library was used. Its
.pack() method was used to pack the encrypted feature package
and IV together into one message to send. Then in the fob’s
firmware, structs were created to access the encrypted feature
package and IV from the received message.

When testing with the boards, there were issues that the
host could not access the secret file with the shared AES key.
In the Docker environment, there are no build steps where the
secrete volume used to store the AES key and tools volume
where the host tools are run out of are both mounted in the
same step. The Docker build environment was not allowed
to be modified for the competition. So in the fob and host
tools have no shared volume between them in which to share
secrets. To fix this, the AES key is hard-coded and then hashed
for the host and the fob. This is not a secure solution, but a
functional one.

F. Access to a feature packaged for one car should not allow
an attacker to enable the same feature on another car

The Car ID is sent in a feature package message. The fob
then checks the Car ID before enabling the feature.



IV. ATTACK PHASE

In the Mitre eCTF, teams are tasked with analyzing and
attacking each other’s designs in order to gain points. During
the competition, teams are provided with access to various
resources to find vulnerabilities, including source code, system
documentation, and host tools. The following section describes
the flags and approach of the attack sub-team for the attack
phase.

A. Flags

There are six flags that can be obtained by compromising
one or more security requirements: new car unlock, temporary
fob access, passive unlock, leaked pairing pin, pin extract, and
enable feature. Each flag’s point value diminishes as more
teams capture it, encouraging teams to attempt the difficult
flags.

B. Tools

One of the tools that teams can utilize in the competition
is GHIDRA, a reverse engineering framework released by the
NSA. GHIDRA allows teams to analyze binaries, including
executables and libraries, to understand their functionality and
identify potential weaknesses. GHIDRA lifts from assembly
to p-code to represent any of the different ISAs that exist
on the market. As of GHIDRA 10.2, it can emulate in p-
code so that firmware can be run in GHIDRA. x86 and ARM
are compatible, however other architectures such as VLIW do
not work well with GHIDRA because it becomes difficult to
determine what code does statically.

The SVD-Loader script is a supplementary tool that builds
parts of the memory map corresponding to the peripherals
and registers based on a system view description file before
analysis to accelerate the reverse engineering process. The
python script at the root of the SVD-loader repository must
be added to GHIDRA’s script manager.

C. Setup

Binaries and other files are imported into a new GHIDRA
project. The binary files for the car and fob firmware are
in ARM Cortex 32-bit Little Endian and must be specified
as such upon initial opening of the binaries. The Texas
Instruments Tiva boards begin instruction execution at address
x8000, which can be specified when first opening the binary to
line up symbols better. However, in practice, some functions
and labels before x8000 are necessary to fully map binaries
to the source code. The SVD-loader script must be run before
auto analysis of the binary. Opening the script manager in
the code browser and running the SVD-loader script with the
TM4C123GH6PM.svd sets up parts of the memory map before
analysis. Running auto analysis with default settings after the
script decompiles the binary and completes preparations for
reverse analysis.

Additionally, elf files compiled with debug symbols can
be analyzed to accelerate the process by providing labels to
functions.

D. Attack Process

The first step of reverse engineering is to map out functions
by observing function signatures, defined strings, function
call trees, and the structure of function bodies and mapping
them to functions in the source code. This step is greatly
accelerated by usage of debug symbols and elf files. Next,
the functions corresponding to inputs must be identified and
analyzed. In the case of the fob, these appear to be UARTchar-
get, UARTreadline, receiveBoardMessageByType, receiveAck,
receiveBoardMessage, and GPIOpinRead. Tracing the function
call trees from these functions and observing the assembly
instructions and input methods of the functions gives rise to
potential attacks using malformed inputs.


