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Abstract— This paper details the current progress in research
into the Wyze Camera by the Embedded Systems Cyber
Security VIP team of the Georgia Institute of Technology. This
document covers the information the team has discovered re-
garding the camera’s capabilities, vulnerabilities, and firmware.
The goal of the research is to discover the Over the Air protocol
used by the Wyze camera so that we can use it as a test case
for the development of an RF fuzzing testbed.

I. INTRODUCTION

The Wyze Camera V2 is an Internet of Things (IoT)
Device. It allows for wireless connection to multiple de-
vices, such as cameras, motion sensors, and contact sensors,
that together provide the user with surveillance over many
locations. When placed on a door or a window, contact
sensors tell users if the object they are placed on is open
or closed. Motion sensors add to detection capabilities and
when triggered, can even serve as precursor events to some-
thing coming into the camera’s view The "Wyze - Make your
Home Smarter" mobile application provides real-time status
updates for the locations being surveilled by these devices.

Recently, there has been an increase in the use of wireless
cameras, cloud access, and mobile applications [1]. As a
result, the need for enhanced security in these devices has
risen. As the number of devices using wireless and cloud-
based technology increases, so too has the risk of attacks
from individuals with malicious intent [2]. Companies often
show a lack of priority regarding security by conducting
security testing of their IoT devices in the production phase
when it is often too late for major changes. Consumer apathy
regarding security (E.g., not changing default credentials on
devices) couples with this developmental idleness to further
security problems. [3].

An example of this trend would be the CloudPets toys
released by the company Spiral Toys. The toys acted as
IoT devices by allowing parents to communicate with their
children via the internet. From late 2016 to early 2017, it
was found that the CloudPets toys had some massive security
vulnerabilities, which led to the data of over 800,000 users
being leaked. However, even when the company was notified
and took notice of the vulnerabilities, hardly anything was
actually done to fix these vulnerabilities. Information about
the companies’ stocks at the time implies that they may not
have had enough money to do much about the security issues.
Therefore, they made the simplest of patches and continued
to sell the toys as if nothing was wrong [4].

An example involving the Wyze camera occurred in 2019.
Wyze confirmed that from December 4th to December 26th
of 2019, a large amount of personal data was leaked to more
than 2.4 million users [5]. Both of these examples should
clarify just how important it is to have enhanced security on
IoT devices is growing.

The main goal of this team is to decode the Over the
Air (OTA) protocol of the Wyze camera since this will
enable the construction of a fuzzing testbed. Fuzzing is a
technique in which malformed data is fed into computer
programs. Monitoring the program’s output while fuzzing
helps find crashes, memory leaks, and other issues, which
would present a way to discover security flaws in the IoT
system. Sections II and III will detail known information
about the Wyze camera, the following sections will document
the progress the team has made regarding the OTA protocol.

II. FUNCTIONAL DESCRIPTIONS

Fig. 1. Overview of System Communications

The motion and contact sensors, the sensor bridge, the
camera, and the Wyze application make up most of the
configuration for the Wyze IP Camera V2, as depicted in
Figure 1. Through radio frequency (RF) communication,
the sensors and sensor bridge exchange information [6].
Through a USB connection, the sensor bridge transmits that
information to the camera. Wi-Fi is then used to connect
the camera to the Wyze cloud servers, transmitting data to
the Wyze app. Up to 100 sensors can communicate with the
sensor bridge [6]. We have Joint Test Action Group (JTAG)
access to the sensor bridge and sensors, enabling dynamic
analysis and memory snapshot-taking.



A. Mainboard
Three printed circuit boards (PCBs) are sandwiched to-

gether to make up the physical Wyze Camera. However, the
main camera system is made up of the main PCB containing
the SoC (System on a Chip) (Figure 2), a microSD board
(Figure 3), and a sensor board (Figure 4).

Fig. 2. PCB of the Main Board

Label Color Red Green Light Blue Dark Blue
Component T20 SoC Flash Mem Serial Port WiFi Board

TABLE I
COMPONENTS FOR MAIN BOARD PCB

One of the circuit boards within the Wyze camera is
represented by the PCB in Figure 2. A T20 processor
[7] using the MIPS (Million Instructions per Second) ISA
(Instruction Set Architecture) powers the board. As seen in
the diagram, the main board also includes flash memory,
Wi-Fi, and serial access. An interactive root shell for the
given Linux OS is made available by the open serial access
highlighted in light blue in Table 1. This was exploited
by soldering wires onto the board, giving us direct access.
Additionally, a password-protected account was present but
this was easily cracked to bypass it.

Fig. 3. MicroSD PCB for the Main Board with motor driver in red

The PCB with an SD card slot and a motor driver to move
the camera is shown in Figure 3.

B. Sensor Bridge
The motion and contact sensors of the camera are wire-

lessly linked to the primary camera by the sensor bridge.

The CC1310 microcontroller, which handles RF packet trans-
mission and reception and packet-to-data conversion using a
Sub-1GHz frequency, controls the sensor application code
and messaging logic. For wireless communication, there is
an antenna that is tuned to or transmits at a frequency less
than 1 GHz.

Fig. 4. Front of Sensor Bridge PCB with CC1310 highlighted in Orange

A WCH CH554T chip on the back of the PCB controls
the USB-A connection that the sensor bridge uses to connect
to the primary camera [8].

Fig. 5. Back of Sensor Bridge PCB with WCH CH554T chip highlighted
in green

C. Motion Sensor and Contact Sensor
The sensor bridge, contact sensors, and motion sensors

communicate wirelessly. A CC1310 microcontroller manages
both sensors.

Fig. 6. Contact Sensor PCB

Label Color Red Brown Green
Component Antenna CC1310 Magnetic Switch

TABLE II
COMPONENTS FOR THE CONTACT SENSOR

The CC1310 receives data from the contact sensor’s mag-
netic switch over its GPIO and constructs a packet to send
to the camera when the state of the switch changes.



Fig. 7. Motion Sensor PCB

Label Color Blue Red Green
Component PIR Motion Sensor CC1310 Antenna

TABLE III
COMPONENTS FOR THE MOTION SENSOR

A PIR (passive infrared) sensor on the motion sensor gives
the microcontroller feedback, which is then used to construct
and send wireless messages that are sent to the sensor bridge.
All of this communication is handled by the microcontroller.

D. CC1310 Micro controller

Fig. 8. CC1310 functional block diagram

Figure 8 displays the CC1310 TI Simplelink Wireless
MCU that powers the sensor bridge for the Wyze Camera.
Our research focused on this processor, particularly the RF
core, its application, and its interactions with the primary

CPU. This CC1310 radio peripheral can be configured to
support a variety of protocol standards [9]. These radio
protocols include ZigBee®, Bluetooth® low energy, and
802.15.4 RF4CE [10].

The main CPU in Figure 8 — also identified as the
ARM® Cortex®-M3 — is known as the system CPU. The
application layer and the high-level protocol stack are all
handled by the main system processor [10]. It executes
programs from the system flash and boot ROM. A boot
sequence, low-level protocol stack, device driver functions,
and a serial bootloader are all executed on this processor
[10]. The system flash is a nonvolatile memory that stores
configuration data and code that is executed when the device
is off so that it can be accessed again after a restart [10].

Figure 8 also depicts the ARM® Cortex®-M0, which is
known as the radio CPU and found inside the RF core.
The radio CPU receives commands from the system CPU
and schedules them into different parts of the RF core.
Additionally, the radio CPU interfaces the analog RF and
baseband circuitries and assembles the information bits in
a given packet structure [10].The RF core operates nearly
entirely from a separate read-only memory (ROM) [10] and
has a dedicated 4-KB static random access memory (SRAM).
[10]. Currently, the way the RF core interacts with the
main CPU is what interests us the most, as it can provide
information about how data is arranged in the communicated
packets.

The radio doorbell module (RFC_DBELL), also known
as the command and packet engine, serves as the primary
means of communication between the system CPU and
radio CPU (CPE) [10]. Dedicated registers, parameters stored
in any of the device’s SRAMs, and a set of interrupts
connected at both the radio CPU and the system CPU are
all components of the RFC_DBELL [10]. This means that
by modifying the RFC_DBELL’s parameters and interrupts,
data and instructions can be sent between the system CPU
and radio CPU. This module provides us with key insight
into the code and operations of the CC1310 in our reverse
engineering with its use and outline of the packet structures.

The SRAM stores the various parameters for specific data
transactions along with packet information (TX and RX
payloads) [10].

By utilizing the exposed JTAG test ports on the PCB, we
soldered wires connected to a TI debugger tool (XDS110)
which allows us to control the processor through the JTAG
connections. This also allows us to capture the Wyze sensors’
memory while in use. This capture will hold a copy of the
SRAM as it was at the time of the dump. It is anticipated
that informational fragments like packets and other volatile
structures will be present when the SRAM is captured.

Before transmission, these structures might be encrypted
or encoded by the CC1310 as part of the Over the Air (OTA)
radio protocol [10]. One of our previous objectives was to
determine whether the packets were encrypted or not. We



determined that the packets were not encrypted due to our
ability to capture and decode packets using SmartRF without
difficulty, something that would not be true if encryption had
been used.

The RF protocol employed by the RF Core of the CC1310
is not well understood; nevertheless, sections V and VI
go into more detail about what was learned about the RF
Protocol through the team’s study.

E. Technical Documents

The TI CC13x0, CC26x0 SimpleLink™ Wireless MCU
Technical Reference Manual [10] is the technical manual
for the CC1310 MCU. Understanding how the chip is used
by the Wyze camera can be made easier with the aid of the
manual, which offers crucial information on how the chip
functions.

For learning about Wyze firmware, we can also uti-
lize the Texas Instruments CC13x0 and CC26x0 Software
Development Kit (SDK) [?]. For developers wishing to
construct applications utilizing this chip, the SDK serves
as an abstract representation of the hardware. It enables
programmers to communicate with the CC1310 through the
application programming interface (API) provided by the
SDK. The CC13x0 SDK also includes example code for
the API being utilized, which is crucial for this team as it
provides example use cases for the team to cross-reference.
The SDK enables the team to become familiar with potential
memory-based procedures, structures, and constants and their
usage in applications. Ghidra is a suite of software reverse
engineering (SRE) tools developed by NSA’s Research Di-
rectorate in support of the Cybersecurity mission[11]. The
Ghidra disassembly has already turned up certain methods
that are available in the SDK. Additionally, the SDK includes
sample implementations of many protocols and programs
that can be used with the API offered by the SDK. There
are examples of RF protocol implementations that include
packet transmission and reception in particular.

III. EXISTING VULNERABILITIES

The Wyze Camera system contains vulnerabilities that
could expose sensitive information if they are exploited.
The Wyze Camera is susceptible to a replay attack. Another
potential issue is that the Wyze Camera’s firmware is not
signed, which will be explained in detail in section III-B of
this paper.

A. Replay Attacks

Previously captured packets from a contact and motion
sensor were replayed to the dongle (alias for the Wyze Sense
Bridge, which is a hub that allows your sensor to connect
the internet) by a USRP N210. Note: More information on
how replay attacks were conducted can be found in the
Packet Captures subsection. The USRP N210 is a software
defined radio used for RF applications, and we used it to
transmit and receive RF signals [12]. The packets were

successfully received by the dongle as verified by the chosen
input displayed in the Wyze application. This means that
the dongle does not adequately verify if it is receiving a
previously received message and is vulnerable to replay
attacks. The first packet associated with an alert contains a
4-digit hexadecimal character value that increments upwards
with each alert and resets when a sensor is powered off.
When captured packets were replayed, this 4-character field
returned to the value that was captured. It is unknown what
these 4-characters represent, but given that they increment
when an event happens, it is possible they are some kind of
sequence counter. This 16-bit sequence counter increments
each time there is an event (open/close, motion/no motion).
Additionally, it resets to 0 every time the sensor is powered
down. Recorded packets can be sent in any order, as long as
the event types alternate between open and closed, and will
be processed successfully by the dongle.

Expanding on the replay attack, Universal Radio Hacker
(URH) modulated packets so that arbitrary changes could
be made. The settings used to successfully modulate packets
can be seen in Figure 10:

Fig. 9. Setting used to modulate packets

Using URH, arbitrary packets were able to be captured by
the dongle without being discarded. Using a recorded contact
sensor open alert, nibbles and then bytes were zeroed out
sequentially and then transmitted with a contact sensor close
alert in between.

B. Unsigned Firmware

In embedded systems, firmware authors can choose to
sign their firmware. By signing the firmware, the author can
prevent the firmware from being modified or corrupted and
flashed onto a device. Signing a firmware entails generating
a hash value, encrypting it with the private key of a pri-
vate/public key pair, and attaching it to the firmware [13].
The firmware on the devices of the Wyze system is not
signed, allowing unauthorized firmware to be flashed onto
the devices [14].

IV. SENSOR LOGS

The sensors and sensor bridge communicate through radio
frequency (RF) messages. The packets received from the
sensors are decoded by the sensor bridge. The type of packet
being sent, will contain information about the camera and
state of the sensors and other devices in the Wyze network.
Some commands for packets are included here, focusing on
ones that we believe are relevant to the work we are doing
[15]:



Name Type Cmd
HD_Inquiry 0x43 0x27
HD_GetENR 0x43 0x02
HD_GetMac 0x43 0x04

HD_GetSensorList 0x53 0x30
HD_GetSensorCount 0x53 0x2E

DH_AddSensor 0x53 0x20
HD_StartStopNetwork 0x53 0x1C

TABLE IV
OTA PACKET COMMANDS

By observing communication during startup and move-
ment in front of the camera and sensors, we gathered log files
for various communication scenarios between the sensors
and the sensor bridge. This gave us a chance to observe var-
ious device communication transmissions. Looking through
some of the RTSP (real time streaming protocol) log files,
there are certain parts of the communication that directly
match with the packet information, such as the type of event
that it was.

A. Packet Decomposition
Through over-the-air (OTA) packets, the camera and don-

gle can communicate with each other. After reviewing the
OTA protocol, we can see the communication channels and
logs that reveal details about the metadata of the camera,
sensors, and other associated Wyze system devices. In Ghidra
[16], we have developed a serial packet register (struct) that
separates the crucial portions of the OTA packets. The header
of the packets is depicted in the following figure. Each
packet’s header structure is the same, only the contents vary,
but its size is always 5 bytes.

Fig. 10. Ghidra Serial Packet Struct Header

Depending on the contents and command type of the
packet being transmitted, the serial packets that are sent
between the camera and the sensor bridge have different
lengths following the header. They will be anywhere from 7
bytes to 64 bytes in size. Checking the two magic bytes and
the command byte is the first step in packet interpretation
from the sensor bridge: The "mode" byte is the third byte
in the packet, while the magic bytes are the package’s first
two indices. The command byte comes after the fourth
byte, which is the length byte. The payload takes up the
remaining space in the packet. The first five sections of
the payload are constant and present in all packages even
though the Wyze camera system employs packets of varying
lengths for communication between the devices [?]. Since
this connection occurs between the camera and the dongle,
any information about the serial packet protocol could be
useful in figuring out the RF protocol.

• Magic bytes: [55] [aa]: is a packet received from the
dongle. Flipping the order, [aa] [55] refers to a packet
from the camera sent to the dongle. These messages in-
clude commands which give information on the system.

1) Finding the length of the packet
– The packet’s length byte is translated into a

decimal value (see Figure 12 below). 3 bytes
apart from the initial magic byte is and (the 4th
byte). This number plus four is the total length
of the packet. The 4 bytes before the packet
length index can be interpreted to be accounted
for by this +4. In other words, this byte truly
indicates how many bytes are left in the packet
length.
To distinguish between two successive packets,
one needs to know the duration of each packet.
The researchers verified that the Wyze system
uses packets with variable-length payloads for
communication. As a result, since the number
of bytes in each packet can vary, it would be
very challenging to determine where one packet
ended and another one began without knowing
the packet length.

Fig. 11. Ghidra interpretation of packet length in decimal

2) Finding the sub_mac value of the camera
– The camera’s sub_mac value can be discovered

in bytes [16:23] of the packet if it is not
an ACK packet. These bytes’ values, like the
packet’s length, are interpreted as decimal, and
the sub_mac value corresponds to their ASCII
values.

3) Simply acknowledging that the previous packet is
received
– This simple ACK packet is 7 bytes long.
– There are only two alternatives for the type

byte (3rd byte): 0x43 or 0x53. Between syn-
chronous (0x53) and asynchronous, there is
this distinction (0x43). When the type is 0x43,
the other device will instantly send a response
packet with any payload data that the current
instruction requires. The responding device will
send packets corresponding to the command



byte and an ACK packet if the type is 0x53.
[15]

V. SIGNAL ANALYSIS OF THE RF PROTOCOL

Reverse engineering Wyze’s proprietary RF protocol be-
tween the touch sensors, motion sensors, and the sensor
bridge is the main goal of the team’s present research. To
proceed, the team must first determine whether the Over-
The-Air packets are whitened and/or encrypted. Analyzing
OTA captures of records between the sensor bridge and the
sensors can help the team understand the issue.

A. Packet Captures

When a data packet is captured during transit over a data
network, it can be kept and examined. To record packets
moving between the dongle and sensors, an Ettus N210
SDR was employed. The packets were recorded with GNU
Radio. The block diagram for data flow and the GNU Radio
flowgraph used to record the packets are shown below:

Fig. 12. Block Diagram showing where Packets and Logs were captured

Fig. 13. GNU Radio flow graph used to record packets for playback

WyzeSensePy, a raspberry pi, and a USB connection to
the dongle—which implements the communication protocol
between the dongle and camera—can all be used to directly
record serial logs [17]. The WyzeSensePy printed the serial
logs that contained the serial data once the RF data (data sent
over-the-air) had reached its destination. The dongle served
as an interface to send/receive messages to/from the contact
sensor.

B. RF Overview

Information from the contact and motion sensor is read
by their microcontrollers and modulated through Gaussian
Frequency Shift Keying (GFSK). GFSK filters the data
pulses and makes transmissions smoother [18]. URH [19]
assists in analyzing OTA packets to understand the protocol
between the camera and the dongle.

C. Sensor Over-The-Air Packet

URH can be used to gain a clearer understanding at what
is happening during the time between the motion and contact
sensor of the camera before the OTA packet is received. This
will allow the team to gain a better understanding of the
communication protocol as we can understand what happens
when the system is in close to an idle position. Seeing what
happens before an OTA packet is received can assist the team
in seeing the changes that occurs as it is received.

D. Packet Contents

Currently, not all data fields transmitted via OTA packets
are known. We suspect that OTA packets are composed of
a proprietary protocol packet with a payload that contains
the application level payload, which may consist of the:
MAC, Battery, Counter, and Event Type. It is likely that the
OTA packets from sensor-to-dongle contain the MAC of the
sensor, which is used for identification, so when messages
want to be received by the sensors, the sensor will look for
its MAC address to see first if it is compatible to accept the
message. As seen in the WyzeSensePy debug information
with a marker reading "battery =...." sensors transmit how
much battery they have left to the dongle via the sensor
bridge. Finally, the type of event is transmitted (open/close,
motion/no motion). Given that we know that the packets
are largely the same (the different open and closed packets
only differed with variation for battery/MAC/counter/event
type) in terms of formatting due to the findings in previous
semesters, we suspected that the packets were encrypted
and/or whitened, but we learned later that this suspicion
was false.The TI SDK has provided insight into the physical
structure of the packets. The diagram below provides more
information:



Fig. 14. RX information

We used smartRF to inquire more information about the
packet structure. In the following figures, we have listed one
open, and one closed packet, respectively. When we tried to
generate more packets, we believe that a possible whitening
issue occurred since we could only read the data of the
packets. However, the packets below, when compared to the
other packets of the same type that we captured, it remained
clear that a certain portion of the data could not be edited,
and we believe that this could be a header to distinguish
the type of event of the packet. This assumption would need
further research to conclude the structure of the packets.

Fig. 15. Open Event Packet

Fig. 16. Closed Event Packet

E. Communication Protocol

When an event is detected, the sensor transmits a packet
to the dongle. Once the dongle has received the packet, it
replies with an acknowledgment, or "ACK", to indicate that

it successfully received the event alert from the sensor. The
dongle keeps the state of sensors in memory. For a contact
sensor, you cannot send two events of the same type back-to-
back since the second packet will result in an error rather than
another event. The state-keeping appears only to be related
to the state the sensor is in (open/close, motion/no/motion)
and not related to the sequence counter embedded in the
message.

F. Transmissions

Packets were transmitted at a frequency of 906.8MHz
with a modulation type of GFSK. URH, alongside SmartRF,
allowed packets to be sent to the dongle and from the dongle
to the host. These recordings were taken from three states of
the motion sensor: motion, connect, and delete.

G. Motion Sensor

URH was used to conduct an analysis of the motion sensor
captures as well as analyze the log files by parsing the
contents to find commonalities. The goal of this was to gain
more insight into the data being sent in the OTA packets.

H. OTA Protocol

The most critical part of our research relies on answering
whether the OTA packets are whitened and/or encrypted. If
one knows this information, one could manipulate and spoof
messages to the Wyze Camera. To uncover the details of
the OTA packets, the team reviewed work done in previous
semesters and continued along the outline depicted in Figure
16.

Fig. 17. Outline of Continuing Research in the OTA Protocol

Using URH, the team would create new packets by taking
previously successful transmissions and arbitrarily editing
some of the bits. After we downloaded the edited replay
attack from URH, we uploaded it to the flowgraph to GNU-
radio companion (Figure 14). In the GNUradio companion,
we would see if a valid replay attack occurred with the
’new’ packet. Success occurred when the edited message
was recognized and captured by the Wyze Camera’s sensors.
Once the flow graph was executed, and WyzeSensePy was
running, the newly created replay attack was tested to see
if they were still valid. The results of the experiment were
inconclusive because the edited replay attack was not able
to be received by the dongle. There are many possibilities



as to why the edited message did not go through: the cyclic
redundancy check (CRC) [20] could have been incorrect, or
possibly the edited piece of the packet was indistinguishable
and couldn’t be unencrypted or encrypted. One way to
overcome this setback would be to correctly recalculate the
CRC after bits are edited and/or to find the sync word. The
sync word, as mentioned later, will allow the team to see
where the data begins in the packet, which would allow us
to directly modify the data bits rather than bits that may be
important for validation, and we can try to replay it to Wyze.

I. The Sync Word

A critical part of reverse engineering the OTA protocol de-
pends on finding the sync word. The sync word, as mentioned
before, indicates the start of the actual data in OTA packets.
The sync word, 0x5555904E, was discovered through RF
Command structures, which will be covered later in the
paper. Through checking XREFs on the sync word in the
structures, it was found that the sync word could also have
been 0x55557A0E. Although the team did not look further
into how the sync word is chosen, the knowledge of the
potential sync word is useful. In the following paragraphs,
the team explains how they used TI’s SmartRF studio to
gain further insight into the sync word’s connection to replay
attacks.

Given that the team uncovered the sync word, we wanted
to answer the following question: can we locate the begin-
ning of the packet’s data if we have the correct sync word?
The team learned that even if the incorrect sync word was
inputted that SmartRF studio would still reveal the data, as
is seen in the figures below:

Fig. 18. Packet Data is Revealed with the incorrect sync word

Fig. 19. Packet Data is Revealed with the correct sync word

However, the team was able to modify the packet data
and directly replay the message to the Wyze camera, given
the correct sync word. The team made this discovery by
arbitrarily modifying bytes starting at the end of the packet
data and replaying it to the Wyze camera’s application; the
application would change from open or close or vice versa.
The team also learned that the most significant 46 bytes could
not be modified or the message would become invalidated
and not be received by the camera. The figure below depicts
the most significant bytes of the packet (not highlighted) that
could not be modified to still have a valid message to replay:

Recently the team has discovered that there are two
possible values for the sync word, 0x5555904E as it is now

or 0x55557A0E. This is decided based on the input to the
function FUN_00012188, which sets up some values in the
data structure mentioned before that contain the sync word.
Not much effort has gone into finding how the sync word is
decided between the two. However, it is useful information
to know the two possible values of the sync word.

Fig. 20. Packet Data is Revealed with the correct sync word

By learning that all the bytes, except the most significant
46 bytes, can be modified, the team learned that the packets
are not whitened or encrypted since those types of messages
cannot be modified and replayed because modifying them
would invalidate the message [21].

VI. REVERSE ENGINEERING THE RF PROTOCOL

A. Ghidra

Ghidra is the program used by the team to reverse engineer
the Wyze Camera’s binary files. The team used a TI debugger
to dump all of the memory of the Wyze camera into binary
files while it was running, obtaining the firmware on the cam-
era as well as other information, such as the SRAM. Those
binary files are loaded into Ghidra, which disassembles the
binary files into their corresponding assembly instructions
and displays the byte memory for memory values that
don’t correspond to assembly instructions. A useful feature
of Ghidra is that it can further decompile the assembly
instructions into source code, displayed as code similar to
the C programming language. However, the raw decompiled
source code may still be hard to read as Ghidra doesn’t have
knowledge of different memory regions, structs, and registers
leading to code that just has a bunch of references to different
parts of the memory.

A helpful tool used with Ghidra is the System View
Description (SVD) loader. SVD files contain information like
the memory map, memory address names, memory registers
locations. The SVD file can be loaded into Ghidra with
the SVD Loader [22], and Ghidra will automatically create
names in the memory map and replace constant memory
references in the decompiled source code with variables and
function calls.

B. Texas Instruments CC13x0, CC26x0 Software Develop-
ment Kit (SDK)

To begin reverse engineering the disassembled code in
Ghidra, the team studied the CC13x0 and CC26x0 SDK by
Texas Instruments, which was introduced in Section II.

During our research, several files in the SDK were inves-
tigated. One file that was focused on was the rfPacketRx.c
example file. Not only does this file include the main thread
containing the setup of the RF protocol, it also demonstrates
the use of a callback() function. This function is believed



to be the primary handler of packet intake through the data
queue.

C. RFC_DBELL
The RFC_DBELL starting at memory location

0x40041000 is crucial for narrowing down functions
related to the RF protocol [10]. The RFC_DBELL is the
primary means of communication between the system CPU
and the radio CPU. It contains a set of dedicated registers
and a set of interrupts for both the radio and system CPU
[10]. The system and radio use the RFC_DBELL registers
and interrupts to send information and commands to each
other, respectively. As such, all functions that reference a
memory location within the RFC_DBELL are likely to be
related to the RF protocol and are a high priority for reverse
engineering. We can find these functions through their
cross references thanks to the SVD loader, which labeled
this memory region while still keeping the Ghidra-created
cross-references [22].

The function 00008bc0_radio_one, hereafter referred to
as Radio1, is one of the functions that interacts with the
interrupts stored in the RFC_DBELL section of memory.
Specifically, it modifies the values of the RFCPEIEN/R-
FCPEIFG, and RFHWIEN/RFHWIFG interrupt register pairs
in the RFC_DBELL. All interrupt registers in RFC_DBELL
are 32 bits. For the pairs that Radio1 interacts with, each
bit represents a different interrupt that is only activated
when the corresponding bit is set to 1 in both regis-
ters. The RFCPEIEN/RFCPEIFG pair of registers contains
Command and Packet Engine Generated Interrupts, and
the RFHWIEN/RFHWIFG pair contains interrupts from
RF Hardware Modules [10]. Radio1 overall appears to be
more of a setup function, as it just modifies certain values
memory and the interrupt registers, and it always calls
the 0000cfdc_radio_two and 0000ee60_radio_three functions
before it concludes.

The 0000cfdc_radio_two function, hereafter referred to
as Radio2, also interacts with the interrupts in the
RFC_DBELL. Like Radio1, Radio2 modifies the values
in the RFCPEIEN/RFCPEIFG and RFHWIEN/RFHWIFG
interrupt register pairs. However, Radio2 also calls the
00013b34_RFCDoorbellSendTo function, which sets values
in the CMDR interrupt register. The CMDR interrupt register
is what is used to pass commands from the system CPU
to the radio CPU [10]. This clearly marks Radio2 as a
transmission function that is meant to send information and
commands from the system CPU to the radio CPU.

Another function found through references to the
RFC_DBELL is the RFCRTrimRead() function. This
function is in the TI SDK within the rfc.c file.
This function references an important struct called
rfc_CMD_PROP_RADIO_DIV_SETUP_t. This is one of
several important structs containing information relating to
the setup of the radio. More on these structs is covered in
RF Command Structures (VI.G).

D. dongle_app

The dongle app is one of the program running on the Wyze
camera and its binary files were obtained with the Wyze
firmware. The dongle app contains multiple areas of impor-
tance in the reverse engineering area. Specifically, functions
were found that were crucial for error handling. One of the
found functions was msgsnd. This was found to be important
as it is responsible for returning several important values,
such as message_queue_id, message_pointer, message_size,
and message_flag, all of which are utilized in various ways
across the dongle_app.

Another found function was msg_success_checker, which
checks whether a message was sent successfully or not. The
function would return a value of 0 if the message was sent
successfully and return a value of less than 0 if it was
unsuccessful. There is a loop that makes three attempts to
get a successful message, and if not, it is assumed to be
unsuccessful. This function is used in many places where
error messages occur, such as when verifying camera info,
setting the camera to play an audio file, or updating dongle
information. The 0 or less than 0 return value allows for easy
programming of error messages. This function is crucial for
designing error message protocols and programming error
messages, as seen in the add_to_msg_queue function.

The add_to_msg_queue function adds messages to a queue
and utilizes msg_success_checker to determine whether a
message was successfully added to the queue. If it is unsuc-
cessful, the function sends an error message containing the
error number. This process depicts a typical example of how
the msg_success_checker is used across multiple functions.

E. Important Data Structures

A set of data structures was discovered that starts at
memory location 20003168. Each data structure starts at
an offset with a multiple of 0x30 from 20003168. In the
current snapshot of the SRAM, there is a data structure in
the memory locations 20003168 and 20003198. The team
believes these data structures are important as they are ref-
erenced frequently throughout the firmware, including in the
Radio1 and Radio2 functions discussed in the RFC_DBELL
(VI.C) section. Moreover, in the two data structures present
in the current snapshot of the SRAM, each contains a
reference to either rfc_CMD_PROP_TX_ADV_s_20002330
or rfc_CMD_PROP_RX_ADV_s_20002378, which are im-
portant structures in the memory that are covered more in
RF Command Structures (VI.G).

F. Advanced Packets

It was determined that the Wyze system uses advanced
packets for communication. This was initially found using
the command number in packets, which, as described above
in section IV, informs the receiving device of what action to
take. A simple scalar search was conducted in the binary
for the command numbers for transmitting and receiving



standard packets(0x3801 and 0x3802), and for transmitting
and receiving advanced packets(0x3803 and 0x3804). These
command numbers were taken from the CC1310 MCU SDK
and are also in the technical manual for the MCU. The search
results were that only the command numbers for advanced
packets were found in the binary file. This led the team
to believe that the Wyze system uses advanced packets for
wireless communication. This was further verified when the
radio setup structures were found in the binary, and only
structures corresponding to the advanced packets were found.
Advanced packets have the option to repeat the preamble and
can have an arbitrary amount of memory allocated for the
payload.

Additionally, while conducting this search, the team found
what seems to be an important pointer in a function for re-
ceiving advanced packets. The pointer points to the memory
location 0x200022c0 in the SRAM. In the function, the value
stored in this location is compared to several values repre-
senting different command numbers. This comparison is used
to determine the subsequent actions of the microcontroller.
This could mean that the command number is being stored
at this location in the SRAM.

This location has also shown up in another area of
the team’s research. Using J-link’s memory dump feature,
snapshots were taken of the contents of the SRAM with the
contact sensor pushed on and off, and a "diff" was performed
of those two snapshots. This exact memory location showed
up in the output of the "diff", as shown in Figure 20 below.
The lines of interest are the lines beginning with 2270. This
represents the memory location 0x200022c0 with an offset
of 0x20000050. The contents of what is being stored in this
memory are not yet understood but should be a focus of
future research.

Fig. 21. Contents in location 0x200022c0

G. RF Command Structures

As mentioned in the Packet Contents (V.A.) subsection
as well as the RFC_DBELL (VI.C) subsection, there are
important RF structures in the code that are referenced by
the radio to initialize, transmit, and receive packets. More
specifically, rfc_CMD_PROP_RADIO_DIV_SETUP_t,
rfc_CMD_PROP_RX_ADV_t, and
rfc_CMD_PROP_TX_ADV_t are radio structures referenced
in the code and contain important information relating to
the OTA protocol. [10] This information will be used for
demodulating and interpreting the packets received from
the system. All the data in these structs is defined in the
appendix.

These structs, and a few other radio initialization
structs, were found in multiple binary files in

a contiguous memory region in the SRAM.
rfc_CMD_PROP_RADIO_DIV_SETUP_t was found using
a combination of static and dynamic analysis on the contact
sensor’s firmware. As mentioned in the RFC_DBELL
(VI.C) subsection, it is referenced in the RFCRTrimRead()
function. Dynamic analysis allows one to confirm which
branch a system takes by executing code and monitoring
register values, for example. JLink is the tool we use to do
this. Using the JLink, we set a breakpoint on this function
and stepped through to find the address of the reference.
Stepping through this function confirmed the use of
proprietary radio commands, and also it provided a possible
pointer to the rfc_CMD_PROP_RADIO_DIV_SETUP_t
struct.

Fig. 22. Assembly of RFCRTrimRead() showing R0 referencing the struct

At address 0x0000bbca in figure 21 we can see reg-
ister 0 is being used as the base address to reference
rfc_CMD_PROP_RADIO_DIV_SETUP_t. The value of R0
is what we were looking for when dynamically executing
the function. We pulled the value after executing and went
to that memory location.

Fig. 23. Raw bytes at SRAM location of structs

Address 20002350 was the address pulled from R0.
As shown in figure 22, the first bytes here show
the value 0x3807. This is the command number of
rfc_CMD_PROP_RADIO_DIV_SETUP_t. When we con-
verted the bytes to the correct data type, all of the fields
aligned with the information about the struct definition
provided in the TI SDK.

The RX_ADV and TX_ADV structs were found using a
scalar search of their command numbers in the dongle binary.
They were referenced directly in the code, so Ghidra could
lead us back to the structure in the SRAM, as compared to the
rfc_CMD_PROP_RADIO_DIV_SETUP_t structure, which
we needed more help with finding via dynamic analysis.

When we refer back to the bytes in figure 22, we can see
at address 20002330 there seems to be another command



number. This prompted up to see if we could locate any
additional command numbers. In this one contiguous region,
the RF command structs of PROP_RADIO_DIV_SETUP,
RX_ADV, TX_ADV, CS, NOP, and FS were found, and we
were able to set these data types to their correct values. We
confirmed that these data types were in the dongle and the
contact sensor binary with matching values.

These structures solve many of the issues we had relating
to the OTA protocol. They provide a great deal of information
regarding how packets are created, transmitted, and received
with important values like the sync word, the preamble,
the baud rate, header information, the whitening mode, and
more. Please refer to the appendix for the struct definitions
and initialization values as found in the SRAM of the dongle.
When referring to the values, if there is a mode defined,
you can find the mode definition in the struct definition in
rf_prop_cmd.h in the TI SDK. The SDK provides proprietary
radio struct definitions in this file and defines the use for
many of the values. Using this information will now be a
primary focus of future work as we continue to demodulate
and interpret data received from the system.

In the CC1310 Technical Reference Manual, there are
tables that define the command structures by specifying their
byte and bit fields while providing meaning for the values
the fields can possess. Cross-referencing the struct values
from a memory dump from the system with the manual has
revealed the following information specifically regarding the
TX_ADV struct. The struct header for TX_ADV is 16 bits
in length, and consists of the first bytes of the buffer pointed
to be pPkt. The remaining bytes in the buffer (presumably
the payload) are transmitted byte-by-byte after the header
is transmitted [10]. Going to the memory address pointed
to by pPkt revealed the header to be 0x0807 (starting from
the least significant bit). Work from this point will attempt
to determine the plain-language meaning of the header (i.e.,
what does assigning this value to indicate about the system)
and be conducted by tracing the references in Ghidra.

A similar process was used to deduce information about
the RX_ADV structs. A conclusion was made that the
RX_ADV also included a 16-bit header. Additionally, in the
header, 11 bits were found to belong to the length field
starting at the least significant bit of the header. Furthermore,
it was found that no address is used in the RX_ADV
command, which is to be expected. This is supported by the
fact that pAddr, the pointer to the location of the address is
null and ignored. However, it was noted that another pointer
pQueue references many data structs that appear promising
in unraveling more about the workings of the camera. Work
from this point will focus on using the data structs referenced
by pQueue and will be conducted through tracing in Ghidra.

H. RF Data Queue
The CC1310 uses a data queue to maintain packets that

are transferred over the air. Data queues are used during the
transfer of packets from the RF core to the main CPU, and

vice versa [23]. In the radio setup structures covered in RF
Command Structures (VI.G), there is a pointer to the data
queue labeled pQueue. This pointer leads to a Data Entry
Queue structure, which contains a pointer to the current entry
on the data queue that is being processed and a pointer to the
last entry added to the data queue [10]. The last entry pointer
is NULL, but the current entry pointer does point at a data
entry, meaning no entries can be added to the data queue
[10]. The current entry in the data queue is a General Data
Entry Structure judging by the value of its type field [10].
The pointer in the data entry for the next entry in the queue
points at itself, implying that the data queue is circular and
has only one data entry in it. Also important is that the total
available storage space for packets is (temp) as indicated by
the length field for RX entries, and the received packet starts
from byte eight of the entry [10].

XREFs to the packet led the team to the 00002520_ra-
dio_something function. Through analysis of how the func-
tion interacted with different parts of the packet, the team
suspected that the Wyze camera is set in the IEEE 802.15.4g
mode of the Proprietary Radio mode. This was then con-
firmed by checking that various fields in the radio command
structures were set to the necessary values for the radio to
be in IEEE 802.15.4g mode [10]

I. Advanced Packet Format

By cross-referencing the technical reference manual with
information gained from the RF command structures in
Ghidra, we were able to make some important conclusions
about the format of packets transmitted and received by
radio.

We determined that the radio was in IEEE 802.15.4g
mode by checking various fields in the radio structs.
Among those was the formatConf.whitenMode field in the
rfc_CMD_PROP_RADIO_DIV_SETUP_t struct, which had
a value of 7. The technical manual shows that the format-
Conf.whitenMode field having a value of 7 indicates that
many of the header bits have very specific meanings [10].

As mentioned at the end of RFC Command
Structures (VI.G), the pointer pPkt from the
rfc_CMD_PROP_TX_ADV_t struct led us to a region
in memory where the packet to be transmitted was located.
Also, in RF Data Queue (VI.H), we found a packet that had
been received. The first two bytes of the packets comprised
the packet header. When the IEEE 802.15.4g format is being
followed, the value of the first 11 bits of the header indicates
the total length of the packet (consisting of payload length
plus CRC length) [10]. Then, the formatConf.whitenMode
field having a value of 7, indicates the meaning of many of
the rest of the bits in the header [10]. Here are the known
meanings of header bits, with the bits counted from the
least significant bit being 0:

• When the 11th bit of the header is 1, whitening is
enabled (otherwise no whitening is assumed) [10].



• When the 12th bit of the header is 1, a 16-bit CRC is
assumed (otherwise a 32-bit CRC is assumed) [10].

• When the 15th bit of the header is 1, it is assumed that
the frame contains a header and no payload or CRC
[10].

An example of setting the header according to these speci-
fications can be seen in the figure below:

Fig. 24. Setting transmit packet header for 32-bit CRC

We were able to confirm that this format was being
followed by analyzing the header found in Ghidra through
the transmit command, which has a value of 0x0807.

Fig. 25. Binary representation of transmit packet header found in Ghidra
with important bits highlighted

As seen in the figure above, the 12th bit (highlighted in
purple) is 0, indicating a 32-bit CRC. The 11th bit (high-
lighted in green) is 1, indicating whitening is enabled. This
is expected based on the value of formatConf.whitenMode
explained at the beginning of this section. The 11 bits of
the header (highlighted in orange), represent a value of 7 in
decimal. This aligns with its meaning of payload length plus
CRC length. 32-bit CRC indicates that it contributes 4 bytes
to the total length. We know the payload is 3 bytes long
using values from the rfc_CMD_PROP_TX_ADV_t struct:
Subtracting numHrdbits (16 in decimal, which equates to 2
bytes) from pktLen (5 bytes) to get 3 bytes for the payload.
Note that the field pktLen in the struct carries a different
meaning from the "total length" information found in the
header. Finally, the 15th bit (highlighted in yellow) is 0,
indicating the frame includes a payload and CRC as we
expect.

VII. CONCLUSIONS

In working towards our overall goal of decoding the Wyze
OTA protocol to enable the setup of a fuzzing testbed, we
made significant progress this semester in fleshing out fields
from the RF command structures and determining the fields

in the radio packet headers. Moving forward, we need to be
able to extract the application data contained in the payload
of the RF packets we have been analyzing in Ghidra. This
step would aid in the creation of a spoofer/message encoder,
which would create artificial packets. We would then be
able to use these artificial packets to probe the system for
vulnerabilities as we develop the fuzzing testbed.
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APPENDIX

rfc_CMD_PROP_RADIO_DIV_SETUP_t
RF_cmdPropRadioDivSetup =
{

. commandNo = 0x3807 ,

. s t a t u s = 0x0000 ,

. pNextOp = 0 , / / INSERT APPLICABLE POINTER :
( u i n t 8 _ t *)&xxx

. s t a r t T i m e = 0 x00000000 ,

. s t a r t T r i g g e r . t r i g g e r T y p e = 0x0 ,

. s t a r t T r i g g e r . bEnaCmd = 0x0 ,

. s t a r t T r i g g e r . t r i g g e r N o = 0x0 ,

. s t a r t T r i g g e r . p a s t T r i g = 0x0 ,

. c o n d i t i o n . r u l e = 0x0 ,

. c o n d i t i o n . nSkip = 0x0 ,

. m o d u l a t i o n . modType = 0x1 ,

. m o d u l a t i o n . d e v i a t i o n = 0x14 ,

. symbolRate . p r e S c a l e = 0xF ,

. symbolRate . ra teWord = 0x3333 ,

. symbolRate . decimMode = 0x0 ,

. rxBw = 0x21 ,

. preamConf . nPreamBytes = 0x2 ,

. preamConf . preamMode = 0x0 ,

. fo rma tConf . nSwBits = 0x20 ,

. fo rma tConf . b B i t R e v e r s a l = 0x0 ,

. fo rma tConf . b M s b F i r s t = 0x1 ,

. fo rma tConf . fecMode = 0x0 ,

. fo rma tConf . whitenMode = 0x7 ,

. c o n f i g . f rontEndMode = 0x0 ,

. c o n f i g . biasMode = 0x1 ,

. c o n f i g . analogCfgMode = 0x2D ,

. c o n f i g . bNoFsPowerUp = 0x0 ,

. txPower = 0xA73F ,

. pRegOver r ide = p O v e r r i d e s ,

. c e n t e r F r e q = 0x0393 ,

. i n t F r e q = 0x8000 ,

. l o D i v i d e r = 0x05
} ;

rfc_CMD_PROP_RX_ADV_t
RF_cmdPropRxAdv =
{

. commandNo = 0x3804 ,

. s t a t u s = 0x0000 ,

. pNextOp = 0 , / / INSERT APPLICABLE
POINTER : ( u i n t 8 _ t *)&xxx
. s t a r t T i m e = 0 x00000000 ,
. s t a r t T r i g g e r . t r i g g e r T y p e = 0x0 ,
. s t a r t T r i g g e r . bEnaCmd = 0x0 ,
. s t a r t T r i g g e r . t r i g g e r N o = 0x0 ,
. s t a r t T r i g g e r . p a s t T r i g = 0x1 ,
. c o n d i t i o n . r u l e = 0x1 ,
. c o n d i t i o n . nSkip = 0x0 ,
. pk tConf . bFsOff = 0x0 ,



. pk tConf . bRepeatOk = 0x0 ,

. pk tConf . bRepeatNok = 0x0 ,

. pk tConf . bUseCrc = 0x1 ,

. pk tConf . bCrcIncSw = 0x0 ,

. pk tConf . bCrcIncHdr = 0x0 ,

. pk tConf . endType = 0x0 ,

. pk tConf . f i l t e r O p = 0x1 ,

. rxConf . b A u t o F l u s h I g n o r e d = 0x0 ,

. rxConf . b A u t o F l u s h C r c E r r = 0x1 ,

. rxConf . b I n c l u d e H d r = 0x1 ,

. rxConf . b I n c l u d e C r c = 0x0 ,

. rxConf . bAppendRssi = 0x1 ,

. rxConf . bAppendTimestamp = 0x1 ,

. rxConf . bAppendS ta tus = 0x0 ,

. syncWord0 = 0 x5555904e ,

. syncWord1 = 0 x00000000 ,

. maxPktLen = 0x03E8 ,

. hdrConf . numHdrBits = 0x10 ,

. hdrConf . l e n P o s = 0x0 ,

. hdrConf . numLenBits = 0xB ,

. addrConf . addrType = 0x0 ,

. addrConf . a d d r S i z e = 0x0 ,

. addrConf . add rPos = 0x0 ,

. addrConf . numAddr = 0x0 ,

. l e n O f f s e t = 0xFC ,

. e n d T r i g g e r . t r i g g e r T y p e = 0x4 ,

. e n d T r i g g e r . bEnaCmd = 0x0 ,

. e n d T r i g g e r . t r i g g e r N o = 0x0 ,

. e n d T r i g g e r . p a s t T r i g = 0x0 ,

. endTime = 1680000000 , / / 7 m i n u t e s

. pAddr = 0 ,

. pQueue = 0 , / / INSERT APPLICABLE
POINTER : ( d a t a Q u e u e _ t *)&xxx
. pOutpu t = 0 , / / INSERT APPLICABLE
POINTER : ( u i n t 8 _ t *)&xxx

} ;

rfc_CMD_PROP_TX_ADV_t RF_cmdPropTxAdv =
{

. commandNo = 0x3803 ,

. s t a t u s = 0x0000 ,

. pNextOp = 0 , / / INSERT APPLICABLE
POINTER : ( u i n t 8 _ t *)&xxx
. s t a r t T i m e = 0 x00000000 ,
. s t a r t T r i g g e r . t r i g g e r T y p e = 0x0 ,
. s t a r t T r i g g e r . bEnaCmd = 0x0 ,
. s t a r t T r i g g e r . t r i g g e r N o = 0x0 ,
. s t a r t T r i g g e r . p a s t T r i g = 0x0 ,
. c o n d i t i o n . r u l e = 0x1 ,
. c o n d i t i o n . nSkip = 0x0 ,
. pk tConf . bFsOff = 0x0 ,
. pk tConf . bUseCrc = 0x1 ,
. pk tConf . bCrcIncSw = 0x0 ,
. pk tConf . bCrcIncHdr = 0x0 ,



. numHdrBits = 0x10 ,

. pk tLen = 0x5 ,

. s t a r t C o n f . bExtTxTr ig = 0x0 ,

. s t a r t C o n f . inputMode = 0x0 ,

. s t a r t C o n f . s o u r c e = 0x0 ,

. p r e T r i g g e r . t r i g g e r T y p e = 0x4 ,

. p r e T r i g g e r . bEnaCmd = 0x0 ,

. p r e T r i g g e r . t r i g g e r N o = 0x0 ,

. p r e T r i g g e r . p a s t T r i g = 0x1 ,

. preTime = 0 ,

. syncWord = 0 x5555904e ,

. pPkt = 0 , / / INSERT APPLICABLE
POINTER : ( u i n t 8 _ t *)&xxx

} ;


