
Fuzzing Embedded Systems: An Investigation Into
Custom Memory Allocators and Automated

Software Testing
Spencer Hua

Vertically Integrated Projects
Georgia Institute of Technology

spencerhua@gatech.edu

Ammar Ratnani
Vertically Integrated Projects

Georgia Institute of Technology
aratnani7@gatech.edu

Zelda Lipschutz
Vertically Integrated Projects

Georgia Institute of Technology
hlipschutz3@gatech.edu

Chris Reid
Vertically Integrated Projects

Georgia Institute of Technology
creid61@gatech.edu

Allen Stewart
Vertically Integrated Projects

Georgia Institute of Technology
allen.stewart@gtri.gatech.edu

Abstract—With the increasing size and complexity of modern
software, manually auditing source code for vulnerabilities has
become intractable for all but the smallest programs. As a result,
automated software techniques like fuzzing have become very
popular due to their effectiveness at finding unique crash paths.
This paper is a summary of the authors’ attempts at applying
modern fuzzing methods to embedded systems. Specifically,
it looks at fuzzing malloc implementations, including those
provided by musl, uClibc, and AVR Libc. Additionally, the paper
examines the authors’ progress in identifying the fundamental
bugs found by fuzzing, as well as their efforts to create a
functional remote code execution (RCE) exploit.

Index Terms—Fuzzing, Cybersecurity, Embedded Systems,
Heap Exploitation

I. INTRODUCTION

In present times, the ubiquity of embedded devices loaded
with programs that require dynamic memory allocation makes
rigorous testing critical to eliminate as many vulnerabilities
as possible. In recent decades, fuzzing has established itself
as a powerful software vulnerability detection tool. Fuzzing
refers to automatic test generation which pass semi-random,
malformed inputs to programs with the goal of causing unex-
pected behavior that can be exploited. It is especially effective
in detecting vulnerabiities that can go undetected through static
program analysis or manual code inspection methods, like
penetration testing [1].

Fuzzing is currently used to detect bugs in many popularly
used programs. Google’s fuzzing tool ClusterFuzz, which was
open-sourced in 2019, found over 16,000 bugs in Chrome
and over 11,000 bugs in open source projects [2]. Microsoft
has also incorporated fuzzing into its Security Development
Lifecycle, requiring ”fuzzing at every untrusted interface of
every product” [1]. Even though there has been extensive
testing through fuzzing of commonly used programs and
libraries like glibc on popular architectures like x86, there
is still a dearth of testing for alternative implementations

on relative obscure RISC architectures like AVR, which are
primarily used in embedded systems. We attempt to bridge
this gap by fuzzing the dynamic memory allocation function
malloc on an AVR microcontroller.

II. HISTORY AND BENEFITS

The term ”fuzz” was first coined in 1988 when Professor
Barton Miller remotely logged into a Unix system during
a storm, which caused so much interference on the dial-up
link that applications using the data off the line crashed [3].
Professor Miller then assigned a project to his class titled
”Operating System Utility Program Reliability – The Fuzz
Generator”, where students were expected to create a basic
command-line program to test the reliability of Unix programs
by throwing random data at them and monitoring for any
crashes. The earliest known fuzzer, ”The Monkey”, written
by Steve Capps in 1983, created random mouse clicks and
keyboard input to test MacWrite and MacPaint, which looked
like an invisible monkey was using the computer.

Fuzzing has grown into a powerfully reliable testing tech-
nique with companies including Apple, Microsoft, Adobe, and
Google publishing their fuzzing efforts [3]. Currently, the most
popular fuzzer is American Fuzzy Lop, which uses compile-
time means and genetic algorithms to crash programs and
locate crashes for debugging purposes [4]. Some examples of
significant bugs revealed by fuzzing include a possible Denial
of Service attack on the Apple wireless internet drivers, known
as MOKB-30-11-2006 [5].

The primary benefits of fuzzing come from its ability to
increase code coverage to levels a human cannot match. For
example, YouTuber LiveOverflow published a series on how
the vulnerability CVE-2021-3156 in the ever-present sudo
program could have been discovered via fuzzing, and how to
subsequently develop an exploit [6]. Astonishingly, when the
vulnerability was first discovered by Qualys, the underlying



bug had been present for over a decade, highlighting the
necessity of better automated testing [7].

Finally, since fuzzing is such a versatile debugging tool,
one possible application of fuzzing is in the annual CSAW
Embedded Security Competition, as the competition is a main
focus of the author’s research program.

III. RESEARCH TARGETS

Since fuzzing is a broad category of fields, the authors are
focusing on two specific categories of devices to apply their
efforts.

A. Embedded Systems

Currently, the majority of fuzzing research has been focused
on fuzzing programs and components designed for general-
purpose operating systems, like the Linux kernel or Microsoft
Windows. However, not as much research has been done into
embedded systems, which can vary drastically from ”normal”
environments in their lack of a memory management unit
(MMU), undocumented source code, or even custom closed-
source operating systems. As Muensch et al. describe, many
embedded systems without MMUs or with custom operating
systems don’t exhibit normal failure responses, instead silently
malfunctioning or not exhibiting any error conditions at all
[8]. This presents a difficult conundrum – how can a crash
be debugged, fixed, or even recognized when the failure
conditions are extremely opaque?

One potential solution is to write a high-quality emulator,
as Pucher, Kudera, and Merzdovnik demonstrate in AVRS [9].
AVRS is a high-quality AVR emulator with a specific focus on
reverse-engineering and a fuzzer built into the emulator. Due
to the accuracy and speed of the emulator, AVRS can detect
vulnerabilities that can present themselves in actual embedded
AVR devices, like misused format string specifiers and return
address stack smashing using a shadow call stack.

Alternatively, fuzzing efforts can make use of hardware
abstraction layers (HALs), which are typically used during
embedded development. Clements et al. published HALucina-
tor, a firmware re-hoster that uses existing HALs to produce
an extremely accurate emulator of many embedded systems
[10]. To further demonstrate the accuracy, Clements et al.
demonstrate the practicality by attaching the ever-popular AFL
fuzzer to demonstrate that bugs can be accurately detected.

B. Dynamic Memory Allocation

Any sufficiently large application requires dynamic memory
allocation. The flexibility it offers over static or stack-based
allocation is indispensable, as is its performance with respect
to both minimizing unnecessary copies and increasing memory
utilization. The heap is pervasive (rightfully so), but that
very pervasiveness combined with the difficulty of writing a
good memory allocator unfortunately means heap exploits are
rampant and devastating.

Perhaps the most famous one in recent memory involves
sudo: CVE-2021-3156. Specifically, a buffer overflow on the
heap can corrupt the metadata used by malloc to manage its

free-lists. Worse still, an attacker can do so with arbitrary data
of arbitrary length [11]. With that precondition, gaining access
to a shell is relatively straightforward [12]. The case of sudo
was particularly disturbing given the binary runs with root
privileges, rendering a shell equivalent to unrestricted arbitrary
code execution.

CVE-2021-3156 was most visible in the context of desktop
and server systems, but that’s not to say embedded applications
don’t face memory allocation bugs. In fact, one such exploit
was discovered in late 2019 for The Legend of Zelda: Ocarina
of Time for the Nintendo 64. Specifically, it’s possible to free
an object the player is holding. The player then tries to update
the object via the pointer it retains, causing a use-after-free
bug. By manipulating the allocation order, this method can
modify the data of many game objects. In its simplest form,
the exploit can be used to change the contents of chests. More
excitingly, it can change objects’ function pointers, allowing
for a very restricted form of arbitrary code execution. It was
enough to warp to the credits in Ocarina of Time, and warp
to the final boss in The Legend of Zelda: Majora’s Mask,
which runs on the same engine [13], [14]. While this isn’t a
critical vulnerability, it demonstrates the pervasiveness of heap
exploits. Even these games, which ran on the bare metal of
the Nintendo 64, still used a heap to manage their memory,
and heap bugs were still an entrypoint for attackers.

Heap issues on embedded systems are common enough
to have been incorporated into many CTFs. One challenge
involves exploiting a memory race condition. Some lock-
free code was written assuming total store ordering between
threads. However, ARM’s memory model is much more le-
nient than x86, causing a race condition in the code whenever
total store ordering is violated. This escalated into a use after
free, which escalated into arbitrary reads and writes, and
eventually a shell [15]. Another challenge proceeds in much
the same way, using a double free to escalate to a shell. Unlike
most challenges, it uses musl instead of glibc [16].

Although the primitives used by these exploits like double
frees and use-after-frees aren’t exclusive to embedded systems,
the methods for obtaining then using them certainly are.
Different processors, different C libraries, and sometimes the
lack of supervision by an operating system equate to a unique
landscape for heap bugs on embedded devices. To explore it,
the authors chose dynamic memory allocation as a target for
their research.

IV. PARTIAL RESULTS

In exploring memory allocation on embedded systems, the
authors investigated a breadth of approaches. Unfortunately,
not all of them gave results. Still, unsuccessful paths are worth
documenting, and they are in this section.

A. The C Library

AFL is currently capable of fuzzing user-space binaries, but
not much research has been done in connecting it to lower-
level components [17]. In particular, afl-gcc is unable to
successfully instrument and fuzz a system’s C library. This



presented a problem for our research, as the malloc is usually
tightly integrated with its libc. To remedy this, the authors put
some effort into decoupling AFL from the underlying standard
library.

The target C library chosen was musl, a popular alternative
to glibc commonly used on embedded Linux systems, as
well as being the default for Alpine Linux. This alternative
was chosen due to musl’s relative simplicity compared to
glibc, as well as the ease of creating a toolchain based on
it. Not only is it statically linkable, it also provides a script
(musl-gcc) to use the system’s C compiler to link with the
musl standard library. This way, one doesn’t have to rebuild
the toolchain as one has to with uClibc. Additionally, AFL’s
least featureful GCC/CLANG mode was chosen to instrument
the code. They’re the simplest in operation, simply editing the
generated assembly code before it’s passed to the assembler.
This simplicity makes it easy to make changes to the assembly
payload if needed.

The primary difficulty in interfacing AFL with the C li-
brary is that it relies on system calls to setup fuzzing [18].
Specifically it relies on:

• atoi,
• getenv,
• mmap,
• shm_open,
• shmat,
• write,
• read,
• close,
• fork,
• waitpid, and
• _exit.

If any one of these functions has AFL instrumentation, then the
setup routine __afl_setup_first will recurse infinitely.
It will call one of these standard library functions, which will
then call __afl_maybe_log, which will then call the setup
routine again.

To avoid this outcome, either these particular functions have
to be left uninstrumented or AFL has to be modified to guard
against infinite recursion. The latter approach is more general
and seems more tractable. One could hypothetically create a
new COMMON variable to flag that __afl_setup_first
is currently executing. The function would check that flag on
entry and jump to __afl_return if it’s set. Unfortunately,
the authors decided to focus their efforts on alternative targets.

B. malloc-ng

As well, while hangover works with musl’s mallocng
implementation, there were no segmentation faults discovered,
only abort signals [19]. The authors suspect that this may be
due to faults on hangover’s end, rather than actual errors
within mallocng.

C. AVR

As mentioned above, a high-quality emulator called AVRS
was developed by Pucher, Kudera, and Merzdovnik. The

authors were interested in accessing the source code of AVRS
and reached out to Pucher, Kudera, and Merzdovnik, but the
source release is still pending due to difficulties on the AVRS
authors’ end.

V. RESULTS

At Georgia Tech, Homework 10 of CS 2110 taught by
Caleb Southern and Dan Forsyth is to write a simple memory
allocator. All of the authors had taken that course. One of them
still had access to their solution, and another one had access
to the autograder’s solution by virtue of being a TA for the
course. The team made the most progress fuzzing those two
malloc implementations.

For the test harness, the team discovered a program written
by Professor Emery Berger of University of Massachusetts
Amherst called hangover [19]. It was originally designed
to fuzz his own memory allocator, but the authors were able
to adapt it to their needs. In doing so, they uncovered many
bugs in the original source code. For instance, hangover
populates allocated blocks with known data and checks that
the data hasn’t been corrupted when it tries to free it. However,
the way the data was populated differed from how it was
checked, leading to SIGABRTs even with correct behavior.
For another example, hangover used C++’s auto when
computing known what the aforementioned known data should
be, but it used a char when reading the data back. This
caused otherwise equal bytes to differ, again causing spurious
failures. Eventually, all these issues were patched, and the
authors submitted a pull request [20].

The authors then ran this patched version of hangover
through AFL for over a day. The autograder’s solution pro-
duced no crashes. It only hung twice, and both of those
couldn’t be reproduced outside of AFL. For the team member’s
solution, however, fuzzing uncovered a major bug. When
adding a block to the end of the free list, the allocator doesn’t
properly clear the next pointer of said block. Since blocks
can reuse freed user-controlled memory for metadata, this
effectively allows an attacker to smuggle a forged block into
the free list. By finding a chunk of data that could emulate
heap metadata, a malicious actor could gain access to a block
of writable memory through grooming the heap such that they
were able to allocate may small fake blocks, finally returning a
writable pointer directly to the chunk itself. One way this could
be exploited is by setting up the heap to point into the Global
Offset Table (GOT). An attacker could then gain access to the
GOT, leveraging said access to both defeat the randomization
of the C library within system memory and gain arbitrary code
execution due to a function pointer overwrite [21].

To demonstrate the severity of this vulnerability, the authors
created a simple proof-of-concept (PoC) program with basic
functionality, mirroring the ”four function heap” programs
commonly seen in cybersecurity competitions. As a first step,
the authors set up the heap to point into the GOT by finding
a block of writable memory located physically right before
the GOT. straddling the boundaries between writable and un-
writable memory. With this access, the authors decided to first



leak the address of puts, a common function in libc, in order
to determine libc’s base address. As mentioned before, libc’s
location is randomized on every execution due to Address-
Space Layout Randomization, enabled by default in all modern
operating systems [21]. With libc located, the authors used
one_gadget to symbolically solve for a location where a
system shell could be opened, then overwrote abort, an
available function pointer to this address [22]. Finally, all that
has to be done is to run the abort function, leading to full
remote code execution.

As a concluding remark, it’s worth noting that the custom
allocator from CS 2110 is remarkably similar to the imple-
mentation in AVR’s libc. Perhaps by studying the potential
vulnerabilities here, the team can gain insight into that allo-
cator’s attack surface.

VI. CONCLUSION

This paper set out to investigate techniques for automated
vulnerability auditing when applied in an embedded systems
concept. Specifically, the authors investigated the application
of fuzzing techniques to embedded environments like AVR
Libc, musl, and a custom memory allocator written by a team
member. While efforts were put into all of these research
targets, the custom memory allocator proved to be the most
fruitful, leading the team to redirect their efforts there. After
some fuzzing, the teams identified a critical bug in the custom
memory allocator, then created a proof-of-concept exploit
that uses this vulnerability to gain remote code execution
on a target machine. Finally, the authors speculate on the
applicability of these techniques to more common embedded
targets like AVR libc.

REFERENCES

[1] P. Godefroid, “A brief introduction to fuzzing and
why it’s an important tool for developers.” [On-
line]. Available: https://www.microsoft.com/en-us/research/blog/a-brief-
introduction-to-fuzzing-and-why-its-an-important-tool-for-developers/

[2] C. Cimpanu, “Google’s automated fuzz bot has found
over 9,000 bugs in the past two years.” [Online].
Available: https://www.zdnet.com/article/googles-automated-fuzz-bot-
has-found-over-9000-bugs-in-the-past-two-years/

[3] “fuzzing.info.” [Online]. Available:
https://fuzzinginfo.wordpress.com/history

[4] A. Roldan, “Sudo heap overflow cve-2021-3156.” [Online]. Available:
https://fluidattacks.com/blog/fuzzing-sudo/

[5] “Mac OS X airport update 2007-001.” [Online]. Available:
https://vulners.com/nessus/MACOSX AIRPORT 2007-001.NASL

[6] LiveOverflow, “The heap: How to exploit a heap overflow.” [Online].
Available: https://www.youtube.com/watch?v=TLa2VqcGGEQ

[7] A. Jain, “Cve-2021-3156: Heap-based buffer overflow in sudo (baron
samedit).” [Online]. Available: https://blog.qualys.com/vulnerabilities-
threat-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-
in-sudo-baron-samedit

[8] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices,” in NDSS 2018, Network and Distributed Systems
Security Symposium, 18-21 February 2018, San Diego, CA, USA,
ISOC, Ed., San Diego, 2018, © ISOC. Personal use of this material
is permitted. The definitive version of this paper was published in
NDSS 2018, Network and Distributed Systems Security Symposium,
18-21 February 2018, San Diego, CA, USA and is available at :
http://dx.doi.org/10.14722/NDSS.2018.23166.

[9] M. Pucher, C. Kudera, and G. Merzdovnik, “Avrs: Emulating avr
microcontrollers for reverse engineering and security testing,” in
Proceedings of the 15th International Conference on Availability,
Reliability and Security, ser. ARES ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
http://eprints.cs.univie.ac.at/7092/

[10] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator:
Firmware re-hosting through abstraction layer emulation,” in
29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1201–1218. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/clements

[11] A. Jain, “CVE-2021-3156: Heap-based buffer over-
flow in sudo (Baron Samedit).” [Online]. Avail-
able: blog.qualys.com/vulnerabilities-threat-research/2021/01/26/cve-
2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit

[12] LiveOverflow, “The heap: How to exploit a heap overflow.” [Online].
Available: youtube.com/watch?v=TfJrU95q1J4

[13] Glitches0and0stuff, “Reach the credits from kokiri forest using
ace: Ocarina of Time glitch explained.” [Online]. Available:
youtube.com/watch?v=wdRJWDKb5Bo

[14] SeedBorn, “How speedrunners warp straight to the moon in majoras
mask.” [Online]. Available: youtube.com/watch?v=3-Gy4Zw1pGo

[15] S. Tong, “This bug doesn’t exist on x86: Exploiting an ARM-only
race condition.” [Online]. Available: github.com/stong/how-to-exploit-
a-double-free

[16] Cyber Security Club @ tOSU, “Mooosl.” [Online]. Available:
github.com/cscosu/ctf-writeups/tree/master/2021/def con quals/mooosl

[17] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[18] AFLPlusPlus, “include/afl-as.h.” [Online]. Available:
https://github.com/AFLplusplus/AFLplusplus/blob/stable/include/afl-
as.h

[19] E. Berger, “hangover: Basic fuzzer for malloc implementations.”
[Online]. Available: https://github.com/emeryberger/hangover/

[20] A. Ratnani, Z. Lipschutz, S. Hua, and C. Reid, “Prevent
segfaults and add data corruption checks.” [Online]. Available:
https://github.com/emeryberger/hangover/pull/2

[21] B. Spengler, “Pax: The guaranteed end of arbitrary code execution.”
[Online]. Available: https://grsecurity.net/PaX-presentation.pdf

[22] D. Chiang, “Onegadget :
Thebesttoolforfindingonegadgetrceinlibc.so.6.′′[Online].Available :
https : //github.com/david942j/onegadget


