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Abstract—Fire protection systems play a crucial role in the
realm of building management. Despite its importance, there’s
relatively little literature surrounding this topic in the field
of cybersecurity. Over the past decade, building management
systems have shifted away from age-old wired systems to more
modern wireless systems that offer a higher-level convenience
over their older counterparts. Though the benefits are un-
deniable, the ability to go wireless has opened up building
management systems to a new domain of attacks. A malicious
actor could assault a wireless fire protection system by triggering
false alarms, disabling the system entirely, or partaking in other
hostile activities to provoke havoc within a building. This study
investigates a product suite from Honeywell (a manufacturer
of building management systems) known as the SWIFT system
which includes common fire protection components such as an
alarm pull station, a smoke detector, a gateway, and more. The
purpose of this study is to uncover any vulnerabilities that could
lead to attacks on the SWIFT system through RF analysis, serial
monitoring, and software/firmware reverse engineering.

I. BACKGROUND

Fire alarm systems are vital components to a well-protected
environment. These systems are responsible for alerting and
protecting against fire emergency situations. Important systems
incentivize individuals to capture, manipulate, and pollute the
protections put in place. Malicious activities can include all
the following: setting off a false alarm to breed distrust,
flooding the system to interfere with an alarm, and decrypting
any critical encrypted material to gain elevated access to the
system. By compromising a fire protection system, malicious
actors introduce a powerful tool into their arsenal. Discovering
and eliminating weaknesses in the system are important de-
fense strategies that need to be implemented to have a robust
protected environment. Eliminating vulnerabilities in the fire
alarm system will deter potential malicious actors.

A. The SWIFT System

As technology continues to develop exponentially, the mar-
ket demand for wireless fire systems will continue to increase
as well. Buildings that house large and complex technolo-
gies will need to implement a fire safety solution. Despite
wireless systems having a significantly higher price than
wired solutions, corporations are discovering that the increased
price of a wireless fire system outweighs the inconvenience
of a wired fire system. Honeywell, a prominent technology
company, carries and supports a product known as “SWIFT”
(Smart Wireless Integrated Fire Technology) [1]. In addition
to being designed to integrate with existing wired Honeywell
products, the SWIFT system’s product line includes wireless
components. The wireless components include a pull station,
A/V bases, gateway, modules, and smoke detectors [2]. The
SWIFT system utilizes a ”mesh network” that allows the
various wireless components to interface and interact with one
another. Each component in the system services as a repeater
for signals as they attempt to travel to the gateway [3]. This
means that each wireless device in the mesh network has
redundancy, meaning that if a component malfunctions, the
system will still function normally as each component has
multiple paths to the control panel.

B. Existing Literature

A previous study on the fire alarm pull station almost en-
tirely identified both the OTA (over-the-air) and USB protocols
used by the SWIFT system. This analysis will be focusing on
the wireless gateway component of the system, which serves
as the heart of the SWIFT system. All wireless devices on
SWIFT’s mesh network must communicate with the gateway
in order to reach the fire alarm control panel (FACP). In other



words, the gateway is essentially a bridge between the wireless
devices on the mesh network and the FACP. If a bad actor can
compromise the gateway, then the entire SWIFT system is
compromised, and further access can possibly be gained into
the wired side of the system.

Additionally, although examining the OTA messages emit-
ted from the gateway is valuable, the team is pursing analyzing
the communication between the gateway and SWIFT Tools
(SWIFT’s companion application) as its main means for
deciphering its messages. This allows for quicker results as
it’s easier to monitor the interaction and makes the operation
of XOR’ing the data by 0xAA unnecessary. However, it’s
important to note that communication in this fashion would
not be possible without SWIFT’s W-USB transceiver which
will be covered in the following section.

II. W-USB PROTOCOL

The companion application that manages the SWIFT suite,
SWIFT Tools, uses a wireless USB transceiver, referred to as
the “W-USB,” [1] to communicate to the devices on the mesh
network. This device is used to send and receive data within 20
feet of where the W-USB is connected to a PC with the SWIFT
Tools software installed. The data that the W-USB receives
is populated into the companion application and stored. This
allows an administrator to overview data about the network
and perform administrative actions regarding the devices. This
data can be analyzed with the tool Serial Port Monitor [2]
which allows the analysis of COM 3 bus traffic between the
W-USB and the SWIFT Tools companion application. This
USB protocol is found to be like the OTA protocol but with
slightly different headers for SWIFT Tools to parse the data.

A. Reverse Engineering SWIFT Tools

Once data is captured using Serial Port Monitor, the headers
and payloads need to be analyzed to understand how and why
messages are being created and how that data became readable
within the SWIFT Tools application. Reverse engineering
the companion application which parses and creates these
messages is a vital to understanding these messages in their
entirety. The team reverse engineered the application using
an open-source .NET de-compiler, ILSpy [3]. SWIFT Tools
is an unobfuscated .NET application with several supporting
Dynamic-Link Libraries (DLLs). The application being un-
obfuscated means all symbols including interfaces, classes,
functions, and global variable names are present. This makes
it possible to understand exactly how SWIFT Tools parses the
messages coming from the W-USB knowing the exact names
the original developers created for each portion of the protocol.

Within the DLLs WirelessComm.dll, WirelessInterfaces.dll,
and WirelessPlugin.dll, all parsing and generation of W-USB
messages can be found. Each message can be one of two types
of general frames. The two frames are the adapter frame,
which is used for the W-USB itself, and the node frame
which is used for information transfer between each device
and the adapter. Both frames contain an open delimiter (7B =
“”), message type (1 byte), payload length (1 byte), payload

(variable length depending on payload length), CRC (Cyclic
Redundancy Check) that is an XOR of previous bytes (1 byte),
and a closing delimiter (7D = “”). These fields make up the
header of each USB packet. The node frame has two extra
fields when compared to the adapter frame. One is a serial
number (4 bytes) and the device type (1 byte). This is because
the node frame is used to transfer information to and from each
device on the network and these fields help direct the message
to the intended device. Several of these message payloads have
been analyzed and decoded.

B. Device State Messages

Periodically, the W-USB receives messages of type, “Back-
GroundScanResponse.” This message includes information
about the device’s current state. Inside the de-compilation
of the DLL file WirelessPlugin.dll, a class named ScanForm
can be found. This class contains two methods, “fillScan-
DataforDevices” and “fillDevcieScanData.” Both methods are
responsible for parsing the incoming “BackGroundScanRe-
sponse” message types. Following the de-compiled C# code,
each field in this message type has been identified knowing
the exact location of each in the payload.

The device model is identified by a 1-byte “NodeType” field
and the specific identifier for that device is present as a 4-
byte serial number. The device model field is responsible in
determining the structure of the rest of the message as different
models can have different status fields depending on the type
of device. For example, in the Honeywell SWIFT suite, the
pull station has four battery slots. Within the background scan
response message, information such as how many batteries are
currently inserted and the time remaining on them are present.
Despite this, some fields are general to all devices. These fields
include firmware version numbers, application build numbers,
SLC addresses, and brand. All fields show as information in
which an administrator can view in the SWIFT Tools software
see Fig. 1.

One different message structure of the “BackgroundScan-
Response” the team identified is the gateway’s state message.
This message contains all the above fields but with added
gateway specific fields. Instead of using the method “fillScan-
DataforDevices,” the method “fillScanDataforgateway” is used
because of its NodeType field being equal to the value for a
gateway device. These gateway only attributes include config-
uration values related to gateway options, magnet lock status,
mesh network states, and a locked attribute. Some fields of
note are the magnet lock status and gateway locked attribute.
The magnet lock status it at the time of analysis “MagnetVer-
fied.” This means to change gateway related settings within
SWIFT Tools an administrator must place a physical magnet
onto the gateway. The locked attribute refers to the option
of an administrator to enable a password to modify gateway
options. At the time of capture a password was enabled.

These state messages and understanding them are vital to
analyzing attack vectors the team implements. The “Back-
groundScanResponse” provides valuable information into the
state of each device on the mesh network. It is because of this,



Fig. 1. SWIFT Tools information hover in Diagnostics for the Pull Station
(left), Relay Station (right), and gateway (bottom).

understanding each device’s attributes help the team under-
stand exactly what an attack vector modified or accomplished
pertaining to a device.

C. Other Messages

Other message types the team analyzed are of the node
frame structure. These messages typically have small payload
sizes if they have a payload at all. The main other messages
the team captured were related to gateway functionality and
control.

The messages that relate to the gateway password function-
ality are “VarifyPasswordRequest,” “VarifyPasswordReply,”
“ChangePasswordRequest,” and “ChangePasswordResponse.”
The “VarifyPasswordRequest” message contains a node type
and a serial number which usually is equivalent to the gate-
way’s node type and serial number. Then it contains a payload
length variable which is the length of the password, and the
payload is the password inputted into SWIFT Tools in clear
text see Fig. 2. The “ChangePasswordRequest” message type
follows an identical format to the “VarifyPasswordRequest”
apart from the message type field. Their responses “Vari-
fyPasswordReply” and “ChangePasswordResponse.” have in-
stead a 1-byte payload which usually is a “01” if the message
was received and the password was successful with all other
fields being identical.

Fig. 2. A ChangePasswordRequest and ChangePasswordReply in Serial Port
Monitor with a hex to ASCII translation on the right. The password set at the
moment of capture is ”Andrew6!”.

Other messages relate to firmware updates in SWIFT Tools
to a specific device. These messages were captured during
a firmware update on the gateway. Before the update, a
“BootloaderIn” message is sent to place the gateway into
a bootloader mode. The exact specifics of this bootloader
mode are unknown to the team currently. This message
contains a serial number and node type to identify which
device this message is being sent to. It also contains no
payload. During the update, AppDownloadResponse and Ap-
pDownloadRequest messages are sent. The payload of the
AppDownloadRequest message contains a byte-for-byte copy
of the hex from the firmware binary. The payload of this
message is of size 52 bytes. The first four bytes of the payload
are currently unknown, but the remaining 48 bytes are copied
directly from the firmware binary. Although it hasn’t been
proven, the AppDownloadResponse message seems to be a
response verifying that the firmware the gateway received was
valid or invalid. These messages contain the aforementioned
data in addition to the other node frame fields. After the
update on the gateway, the gateway becomes automatically
unlocked. An administrator will have to relock it if they wish
to keep the gateway locked. The messages to relock come
after “ChangePassword” message types. The messages are
“LockgatewayRequest” and “LockgatewayResponse.” These
messages contain only node frame fields.

III. GATEWAY AUTHENTICATION

Being the controller of the entire mesh, the gateway also
offers an authentication system to prevent unauthorized users
from making configuration changes. By default, the gateway
is in an unlocked state, but once the mesh network is formed,
the building maintainer places the gateway into a locked state.
Each time the gateway is locked, a new password must be
created that will later be used to unlock it. In addition, a Hall
sensor is used to ensure the physical presence of the user
attempting to unlock the gateway. The user passes this check
by simply swiping a magnet over the gateway.

While in a locked state, a user can still access certain
characteristics of the gateway, such as battery level or firmware
version. Changing device configurations, along with viewing
the mesh layout and updating the firmware, can only be done
when the gateway is unlocked. This presents a challenge to
the team when attempting to find an exploit.



A. Fuzzer

To find a way to bypass the authentication, the team decided
to create a fuzzer in an attempt to find a vulnerability in
the gateway’s software. A fuzzer is a piece of software that
manipulates inputs to a system to try to cause some sort of
unintended behavior. This unintended behavior could then lead
to a security vulnerability. The decision was made to continue
the previous team’s development, but this time by utilizing the
BooFuzz [4] fuzzing framework to speed up the development
process. During the development of the fuzzer, the team
discovered a vulnerability in the authentication system’s logic
just by testing different variations of message types.

B. Authentication Bypass

By sniffing the connection between SWIFT Tools and the
gateway, the general authentication flow can be discovered (see
Fig. 3). Notably, authentication occurs through the use of two
different message types: “VarifyPasswordRequest” and “Lock-
gatewayRequest”. By omitting the “VarifyPasswordRequest”
message and simply utilizing the “LockgatewayRequest” por-
tion of the authentication process, it is possible to unlock
the gateway without the use of a password. This means that,
although the password check is enforced from inside SWIFT
Tools, it is not actually needed on the gateway side to complete
the unlock process. However, the magnet step is still required
when using this method.

While most sensitive message types are protected by authen-
tication, the message to enter bootloader (update) mode is not.
By placing the gateway into bootloader mode, then rebooting,
the gateway is placed into an unlocked state, allowing access
to the configuration and the ability to upgrade/downgrade
firmware. See Fig. 4 for the exact process of fully unlocking
the gateway. Although the first method of bypassing authen-
tication still requires the use of the Hall sensor, it does not
disrupt the devices on the mesh network, which may be
important depending on the situation. Placing the device into
bootloader mode causes the mesh to be disbanded and all
protection to be disabled, which may arouse suspicion.

IV. FIRMWARE ANALYSIS

The gateway for the SWIFT system utilizes the Texas
Instruments (TI) MSP430X family [5] of processors, which is
responsible for the gateway’s operation at the firmware level.
The gateway runs three separate firmware binaries– one for
RF communication, another for SLC interfacing, and a third
that handles the gateway’s bootup procedure. The RF binary
will be the main focus of the team’s investigation, as it handles
all wireless communication and will likely be where the most
valuable vulnerabilites lie. Ghidra [6], an open-source tool for
the static analysis of software binaries, will be used to better
understand the inner workings of the firmware binaries.

A. Firmware Disassembly

Each release of SWIFT Tools includes several versions
of the gateway firmware as raw binary files meant to be
copied directly to the gateway’s internal memory. When one of

Fig. 3. The communication sent during the usual authentication process

Fig. 4. The process for bypassing the gateway’s authentication

these publicly available binaries (North American version 3) is
loaded into Ghidra, the machine code is partially disassembled
by the tool’s built-in disassembler. When loaded directly from
the publicly available binary, the results of the disassembly
are inaccurate, because of address mismatches, which cause
sections of data to be disassembled as code and pieces of code
to be interpreted as stored data. This problem occurs because
the first section of the binary program on the microcontroller
is not delivered during the the firmware update process; only
the contents after address 0x5C00 is delivered. Shifting the
binary forward such that the first address was placed at address
0x5C00 allows a more accurate disassembly to be performed.

In order for Ghidra to perform its automated disassembly
analysis, it must be provided with an entry point of the
software’s operation, from which it will begin disassembly. In
programs for the MSP430 family of microprocessors, the entry
point is identified with the function label c_int00() [7].
The documentation provided by TI for the MSP430 compiler
documents the actions taken by the c_int00() function,
which allowed it to be identified with relative ease. The
function, as seen in the tool Ghidra, may be seen below in
Fig. 5.

With the disassembly process beginning at c_int00() ,
Ghidra is able to flow through a significant portion of the
total machine code, disassembling in the process. However,



Fig. 5. The function c_int00() , as seen in Ghidra. One of the actions it
performs that assists with identifying it is the setting of the stack pointer to
the address 0x5C00.

Ghidra does not continue disassembly after an instruction
that modifies the program counter (e.g., branches, jumps, and
returns) if it does not determine that control flow returns to the
following instruction. With the use of a script that integrates
with Ghidra’s scripting API [8], it is possible to proceed past
some of these instructions (namely, return statements), and
thus disassemble and view much of the remainder of the
gateway firmware.

B. Binary Comparison

BinDiff [9] is a comparison tool for disassembled code bi-
naries. In prior research, the live firmware was extracted from
the pull station in the fire alarm system as well; to leverage this
research in the current study, it is useful to create a comparison
between the gateway firmware and the pull station firmware,
because it was hypothesized that there would be significant
shared code between the two (as they are developed by the
same company, for closely related purposes as part of the
same system, for the same target ISA, and because some
common functions have been identified manually). Owing to
the challenges with disassembling the gateway firmware in its
entirety (the solutions to which are described above), an initial
effort to generate the binary difference showed that more than
70% of the functions have no match between the binaries, and
that those that do match have very low similarity ratings as
can be seen below in Fig. 6.

The true figures for the percentage of shared functions
and their similarity ratings, which were identified after imple-
menting the address rebase, disassembly from the entry point
function, and the scripting to proceed past return instructions,
are significantly higher. Subsequent analysis revealed that
approximately 65% of functions were in common, with many
having similarity ratings above 0.9, indicating a very close
match. The results of this analysis may be seen below in Fig.
7.

C. BinDiffHelper

BinDiffHelper [10] is a Ghidra extension which makes it
possible to copy function labels, variable names, and other
data from one binary under analysis to another after a binary

Fig. 6. The output from the tool BinDiff, showing the percentage of common
functions between the gateway firmware and the pull station firmware. On the
first iteration, slightly fewer than 30% of functions are identified as being in
common.

Fig. 7. The output from BinDiff, showing the percentage of common functions
and their similarity ratings between the gateway firmware and the pull station
firmware. After various solutions were implemented to improve results, more
than 60% of functions were identified in common.

difference has been created using BinDiff. By copying this data
over and leveraging the tool’s ability to create call graphs and
identify common function blocks, many functions that were
previously studied in research on the pull station could also be
identified in the gateway. The tool’s interface, which allows the
functions to be filtered for copying based on their similarity,
can be seen below in Fig. 8.

Fig. 8. The interface of the tool BinDiffHelper, showing the options for
copying functions between binaries; note also the column listing the function’s
similarity ratings.

D. OTA Encryption

Honeywell claims that the SWIFT system uses encryption
on each of its messages to prevent miscommunication and
for security purposes, with each device having its own unique
key (which they identify with a “profile”) [11]. For this reason,
the team hypothesized the presence of an encryption algorithm



in the gateway firmware. The Advanced Encryption Standard
(AES) [12] is a widely-used encryption method, and a segment
of the data memory of the gateway firmware (as well as a
similar segment in the pull station firmware) contains a series
of lookup tables that are used in most implementations of
AES. One of these tables, called “S-box,” can be seen below,
both as shown in a reference work on the implementation of
AES (Fig.9) and in the disassembled gateway firmware (Fig.
10). With these tables identified, the functions responsible for
performing AES encryption were also identified, and may be
a subject for future work.

Fig. 9. The S-box lookup table, as used in standard implementations of AES.
These values may be matched with those seen in Fig. 10.

Fig. 10. The AES lookup tables in the gateway firmware, as seen in Ghidra.

E. String Analysis

Many strings are found in the gateway firmware; this section
details the team’s discoveries concerning their presence and
purpose throughout the code. The strings may be separated
into two categories: human-readable strings and unreadable

strings. In order to distinguish the two categories, the list
may be filtered in Ghidra by the ”Is Word” attribute; by
filtering with attribute as true and false, lists of readable and
unreadable strings may be obtained, respectively. The list of
human-readable and unreadable strings are shown below in
Fig. 11 and Fig. 12, respectively.

Fig. 11. The list of human-readable strings in the gateway firmware.

From the given lists, readable strings are identified by locat-
ing their specific addresses in the assembly code. A number
of strings are candidates for further study, including, among
others, “GATEWAY”, “Index:”, “HopLevel”, and “Network:”.
These strings are located in the first section of the assembly
code, the data segment. Among these list of strings some have
no references throughout the firmware because the relevant
sections have not been disassembled (or partially there are
instructions incorrectly disassembled).

By filtering with the ”Is Word” attribute set to ”false,”
Ghidra produces the list of unreadable strings; this set consti-
tutes the majority of the identified strings, most of which are of
unidentified function. Possible reasons for their classification
include errant behavior by Ghidra’s automatic tool (i.e., they
are, in fact, not strings at all) or a type mismatch between the
string data type in the tool and the firmware implementations.
As a result, it is likely that Ghidra has not correctly interpreted
these fields in the disassembly process.



Fig. 12. The list of unreadable strings in the gateway firmware.

Some of the unreadable ”strings,” as identified by Ghidra,
are miscellaneous data fields, not strings at all. Some of these
are referenced frequently throughout the firmware, both in
reading and writing operations, depending on the data and
the referencing function. Such cross-referencing details may
be seen below in Fig. 14.

Some of the strings which were investigated are ”19200”,
”38400”, ”57600”, and ”115200”. These selected strings
were referenced by same functions in the firmware;
FUN_0002443c and FUN_0003c6c4. FUN_0002443c
takes the input command and compares its value with one
of these fixed values of strings. It specifically compares two
values by passing them to the FUN_0003c6c4; the function
loops through the string and compares each character and
returns 0 if the strings match. After further investigation of
these string values and functions they were also found in
the pull station firmware which were defined as baud-rate
related functionality. As to how the functions are defined,
the baud-rate for the device can be configured among the
provided values; ”19200”, ”38400”, ”57600”, and ”115200”.
Such details can be found in Fig. 15 and Fig. 16.

F. Memory Allocation

After fully disassembling the gateway firmware, it is clear
that there is more than one instruction code block in the

Fig. 13. Section Allocation Architecture.

Fig. 14. The list of cross-references to selected data locations in the assembly
code.

firmware. According to the MSP430 Assembly Language
Tools User’s Guide [13], the processor provides several ways
to perform memory allocation. The default memory allocation
scheme is defined in a sequential manner. One of the other
memory allocation schemes, which corresponds to the gate-
way firmware, is the section allocation scheme. This scheme
consists of multiple code blocks, distributed across different
locations. The gateway firmware consists of two or three
distinguishable instruction code blocks. According to TI’s
documentation, the first block of instruction memory may
begin at the memory location of 0x00007274 and the second
block at 0x00FFAF, although this does not fully comport with
manually identified functions that are located at an address as
high as 0x5D56. A diagram representing the section memory
allocation scheme is shown below in Fig. 13.



Fig. 15. Fixed values of strings investigated.

Fig. 16. Function referencing strings ”19200”, ”38400”, ”57600”, and
”115200”.

V. CUSTOM FIRMWARE

A. Background

One possible approach for cyber-criminals to attack the
SWIFT system is for them to upload their own custom
firmware which would allow them to control various devices
on SWIFT’s mesh network. While not entirely likely, it’s
important to consider every attack vector when securing any
piece of hardware. As such, research has been conducted in
an attempt to demonstrate control of the Gateway via custom
firmware.

B. Custom Service Pack

In order to put a user-created firmware on the Gateway,
SWIFT Tools (SWIFT’s companion application) firmware
upgrade/downgrade interface requires that the firmware is part
of a service pack. In terms of the SWIFT system, a service
pack is a collection of firmware upgrade/downgrade binaries
that can be used to update the various devices on SWIFT’s
mesh network. Each service pack contains a few binaries along
with a ”servicepack.config” XML file (Fig. 17.) which contains
the general properties of the entire service pack (e.g., Name,
Region, Notes, Version, etc.) and the specific properties of
each individual firmware file (e.g., FileName, DeviceType,
Version, IsBootloader, etc.). SWIFT Tools is shipped with
a few service packs (e.g., SP NA 2.2, SP NA 3.0, etc.)
which correspond to different versions of the firmware. A
picture of the contents of the Honeywell provided service pack
SP NA 2.2 can be seen in Fig. 18.

Because Honeywell already provides service packs (SPs),
creating a custom SP is as simple as copying and past-
ing one of Honeywell’s and editing the desired binary. As
long as the SP exists within the ”ServicePacks” directory
in the SWIFT Tools installation location and it contains
a ”servicepack.config” file, then SWIFT Tools will recog-
nize it as a valid service pack. The custom service pack
(seen in Fig. 19) created for this procedure has the name
SP NA 9.5 (i.e., Service Pack, North America, version num-
ber) which follows SWIFT’s service pack naming conven-
tion of SP continent version . This SP is a duplicate of
SP NA 2.2 (Fig. 18), except that the version numbers have
been changed in order to make it easily distinguishable from

Fig. 17. The servicepack.config XML file used with the custom serice pack

Fig. 18. Honeywell provided SP NA 2.2 service pack

the other SPs. Since the focus is the gateway, all non-gateway
binaries were stripped out of the service pack. With this
custom service pack loaded, SWIFT Tools firmware upgrade/-
downgrade interface recognized the service pack as seen in
Fig. 20.

Fig. 19. The custom service pack



Fig. 20. SWIFT Tools upgrade/downgrade interface with custom service pack
present

C. Custom Firmware Binary

Within the created custom SP, there are three gate-
way binaries: WSG BU2 RF 9 0.bin, WSG RF 9 0.bin,
and WSG SLC 9 0.bin. Each corresponds to a different
component of the Gateway (i.e., Bootloader, RF, and SLC
respectively). In order to prove that the custom firmware is
living on the Gateway, it is critical that any bytes changed
in one of the binaries are significant to the OTA (over-the-air)
communication to or from the Gateway. As such, the gateway’s
RF binary WSG RF 9 0.bin was the only firmware that was
changed in this SP. The other two binaries are identical to
those provided by Honeywell (WSG BU2 RF 2 0.bin and
WSG SLC 2 0.bin) in SP NA 2.2.

From examining the SWIFT Tools C# decompilation as
described previously in the paper, it was determined that the
eighth-to-last byte of every firmware binary is used to define
a variable called HardwareVersionSupported which is
a property of each firmware file. This variable is actually a
list, so it can contain multiple values, but regardless it only
ever contains 1.0 or 1.1. This value appears to correlate with
the hardware version (HW Ver) field which is seen on various
devices in SWIFT Tools. The gateway specifically has a value
of 1.0 for this field inside SWIFT Tools as seen in Fig. 21.

Fig. 21. Gateway HW Ver number in SWIFT Tools

Since SWIFT Tools is distributed as an unobfuscated .NET
application and due to poor programming by Honeywell,
the decompiled C# code tends to be accurate in terms of
variable naming. This means it’s safe to assume that the
HardwareVersionSupported variable means one of two things:
1.) this variable is directly linked with the HW Ver field seen
inside SWIFT Tools, or 2.) this variable is used to check if
the real HW Ver bytes yield a version that is supported. Either
way, by changing this byte it should provide the significant
change needed to confirm that the custom firmware is on the
Gateway because the HW Ver number has already been found
in the serial communication with the Gateway as described in
the W-USB Protocol section.

By running SWIFT Tools through a .NET debugger called
dnSpy (similar to ILSpy), it was determined that changing
the 8th byte back from 08 to 17 which will change the
HardwareVersionSupported variable from ”1.0” to ”2.7”. This
change to the firmware binary should be visible not only in
SWIFT Tools, but also in the OTA/serial communication with
the Gateway. With this small change to the RF binary, the
team initiated the firmware upgrade/downgrade process within
SWIFT Tools.

D. Upgrade Results

Upon selecting to upgrade the firmware of the Gateway
within SWIFT Tools, the entire communication between the
SWIFT W-USB and the Gateway was recorded using the
application Serial Port Monitor (SPM). Without examining
these captures, it was clear that the custom firmware upgrade
was unsuccessful due to the ”Corrupted Firmware” status
seen within the SWIFT Tools firmware upgrade/downgrade
interface (Fig. 22). Fig. 22 also shows that the unchanged
SLC firmware was uploaded successfully, but the RF binary
was not.

Fig. 22. ”Corrupted Firmware” message inside SWIFT Tools

E. Upgrade Rejection Inside SWIFT Tools

By analyzing the SPM capture, the team found that
the firmware upgrade failed during a LaunchAppRequest
message. Since the firmware update failed during a
LaunchAppRequest message (returning a 0 value within
its payload), looking at the SWIFT Tools decompila-
tion using ILSpy yields insight into the behavior of the
firmware failure within the application. Within the “Honey-
well.WirelessTool.WirelessPlugin.ScanForm” class, the team
found a method named LaunchAppCode. This method deals
with the sending of the LaunchAppCode message type. De-
pending on the result of the response from the device, the
LaunchAppCode returns a value in accordance with the suc-
cess of the operation. It checks the payload of the Laun-
chAppResponse message the device generates and obtains the
value of the one-byte payload within the message type. If this
value is a 0 it will return a value that is not zero meaning
it was unsuccessful. This value is processed by the parent
function and the value returned corresponds to a device status
enum. The DeviceStatus enum class is shown in 23. The value
returned from this parent method results in an enum value
of 3 which corresponds to the value “Corrupted.” This enum
also corresponds to the message “Corrupted firmware” that is
present in the GUI.



Fig. 23. Enum class showcasing the device status values.

Completely understanding the behavior in SWIFT Tools is
crucial to ruling out any validation checks of the firmware
update process present in the client. The values recovered
from SWIFT Tools included in the DeviceStatus enum class
can be helpful for future analysis of the binary as the device
generates these messages during the firmware update process.
This allows the team to narrow their focus in understanding
the firmware update process device side.

F. Tools for Serial Port Monitor Analysis

Analysis of serial port monitor text dumps can be difficult
and time consuming. This is because the ability to filter
out irrelevant information and use automated tooling for
deeper analysis is hindered by the information that Serial
Port Monitor adds to the text dumps. A script was created
to remove timestamps and hex to ASCII generated by Serial
Port Monitor, remove extraneous bytes added after the end
message delimiter, and place each message separately on its
respective line number. The tool also allows for the ability
to extract specific message types and filter out any message

types that the user does not want to extract. Multiple message
filtering is also supported. This is helpful for filtering out re-
transmissions and NACK messages that can crop up during
listening.

With this tool, other automated tools can be used to process
the data such as diff, a command line difference tool that
can compare files line by line. The firmware update process
yields over 6000 messages communicated over USB between
SWIFT Tools and the device. Parsing through all informa-
tion and determining where, if any, differences between the
valid firmware and custom firmware uploads can be quickly
determined using diff. The results of this difference between
the firmware update from version 2.2 to version 3.0 using the
custom firmware compared to the valid update yielded only
a difference mentioned previously in the LaunchAppResponse
message. The payload was a 00 instead of a 01 in the valid
update. Even though the results were not fruitful, the tool can
be of use in the future for rapid analysis of Serial Port Monitor
message dumps.

VI. GATEWAY INTERNALS

Fig. 24. The wireless gateway removed from its shell

A. Background

As mentioned previously, the SWIFT gateway is meant
to interface the wireless capabilities of the SWIFT system
with an existing SLC-based FACP. Rather than use a single
processor with a complicated multi-tasking setup, Honeywell
opted to include two discrete MSP430X processors on the
gateway board that communicate via a serial channel. These
two processors can be found in the upper portion of the board
as seen in Fig. 24. Additionally, a JTAG header is available to
directly connect to either of the processors for debug purposes.

B. Firmware Update Mechanism

The board’s JTAG port can be utilized to dump the RF
processor’s memory during different parts of the firmware
update process, which allows several details to be seen that



could not be found during the static analysis of the update
files. Firstly, the RF chip orchestrates the update process for
all three of the firmware binaries. During the first portion of
the update, it receives the SLC update and passes it directly
to the SLC processor via UART. Afterwards, the bootloader
firmware is updated, with the RF update being received and
applied last. Rather than using the included BSL mode of the
MSP430 family of processors, the requisite functions for the
update included in the bootloader firmware are moved to RAM
with execution resuming from there, allowing for the internal
flash to be overwritten without issue.

Secondly, as deduced from the failed custom firmware
package, there is some sort of verification process being
performed on each binary, presumably through a checksum
embedded somewhere in the binary’s data. Unfortunately, a
method for bypassing this check has not been determined yet,
which will likely be the next order of business for a future
team.

VII. CRC VERIFICATION

During a firmware update. The MSP430 chip within the
gateway provides a CRC-CCITT standard module. This CRC
implementation is widely used, so it is well-documented and
the exact code for the implementation found in the firmware
can be found [14]. As it turns out, a one-to-one implementation
of this algorithm is found to exist inside the firmware update
binary for the gateway as analyzed in Ghidra. Analyzing the
last several bytes of the firmware binary in Ghidra yielded a
cross reference to a function that passes memory addresses
and lengths to another function. This other function, with the
arguments passed, performs the CRC-CCITT algorithm on the
specified memory addresses. The exact memory blocks this
function creates the CRC for within the binary are currently
unknown, as more research is needed.

An analysis of the parent functions relating to the CRC
check yields an execution path to the c_int00 function. The
function, c_int00 calls a function that starts a firmware up-
date process. This is referenced in one of the parent functions
relating to the CRC check. A function that prints the string
MU_START is called in one of these parent functions. The
string MU_START can be referenced in the SWIFT Tools de-
compilation standing for Mesh Update. This coincides with the
subsequent functions that call the CRC-CCITT algorithm and
check if these values return 0 successfully. The decompilation
of this code is seen in Fig. 25 which determine if the CRC is
valid.

Turning to SWIFT Tools for information regarding
the key memory addresses used during the firmware
update may provide useful information. In the class
Honeywell.WirelessTool.WirelessPlugin.ScanForm
the downloadAppCode method is analyzed
again as it uses memory address values related to
the firmware update process. These methods are
named LoadAddressesBeforeVersion3 and
LoadAddressesAsPerFileFooter. Within code and by
their respective naming convention SWIFT tools utilizes these

Fig. 25. CRC parent function calling CCITT algorithm.

functions to determine what memory addresses in the device
correspond to the data found in the firmware binary for update.
With version 3 and up, SWIFT Tools changed the method
of determining this from static values in the application to
values appended at the end of the firmware file. The static
values within the LoadAddressesBeforeVersion3
are shown in 26 with their values in hexadecimal shown
to the right. However, the function to analyze is the
LoadAddressesAsPerFileFooter as the custom
firmware upload is utilizing version 3. The function takes the
last 30 bytes and uses them along with some mathematical
manipulation to determine the values shown in the static
version. A re-implementation of the function in another
programming language (Python) determined that version 3
contains the same values except for IPacketFirst which
is a value lower than the hard coded version. This value deals
with the number of packets to send and does not have to do
with memory addresses. The link between these values and
CRC is to be determined and further research is needed.

VIII. CONCLUSIONS

By continuing to analyze the decompiled code generated
by reverse engineering Honeywell’s companion application
called “SWIFT Tools”, more information has been found on
the firmware upgrade/downgrade process that devices like



Fig. 26. LoadAddressesBeforeVersion3 shown in the ScanForm class.

the gateway undertake. Further, string analysis in Ghidra is
moving the team closer to finding the encryption keys used to
encrypt the OTA messages emitted from the Gateway. Through
the use of Serial Port Monitor and the fuzzer, the team has
deciphered the meaning of more message types and found a
notable vulnerability in the SWIFT system. If this vulnerability
in the gateway were exploited, a bad actor could bypass two
levels of authentication and disable SWIFT’s mesh network
which would render all wireless devices in the mesh network
incapable of communicating with the fire alarm control panel
(FACP). Research and effort has been put towards uploading a
custom firmware to the Gateway which will be possible only
after determining the specifics of the CRC validation.

Additionally, the team has performed extensive analysis on
the gateway firmware, including the development of scripts
that allow for improved disassembly. While the exact method
of verifying the firmware has not been deduced yet, much
progress has been made in determining exactly how the update
process works and how the RF processor writes to flash.

Future goals for research on the SWIFT system and in par-
ticular the gateway include: converting a larger portion of the
firmware’s assembly into a readable C code in Ghidra, finding
the encryption keys used to encode the OTA messages emitted
from the gateway, learning more about the encryption being
used, bypassing the CRC validation used when upgrading
firmware, and sending a valid team-created firmware binary
to the gateway. With this information, the team will be able to
execute a successful cyber-attack and demonstrate full control
of the Gateway and thus the entire SWIFT system.
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