
Patching of ESC Challenges via Applied Research
and Experimental Verification: Team Mouseion

Finalist Paper
Siddhant Singh (Student)
Vertically Integrated Projects

Georgia Institute of Technology
ssingh484@gatech.edu

Cameron Newman (Student)
Vertically Integrated Projects

Georgia Institute of Technology
cnewman35@gatech.edu

Siddharth Suman (Student)
Vertically Integrated Projects

Georgia Institute of Technology
siddharthsuman@gatech.edu

Sheel Shah (Student)
Vertically Integrated Projects

Georgia Institute of Technology
sshah23@gatech.edu

Allen Stewart (Advisor)
Vertically Integrated Projects

Georgia Institute of Technology
allen.stewart@gtri.gatech.edu

Abstract—This document details the vulnerability mitigation
patches that team Mouseion from the Georgia Institute of
Technology implemented for all challenges of the CSAW ESC
2021 event as part of the research track. These challenges
involved various vulnerabilities to Fault Injection and Side
Channel Analysis based attacks which were analysed, mitigated
and verified by the team. This involved examining existing
research as well as applying generalized mitigation approaches
for such vulnerabilities to each challenge program. These miti-
gation implementations were tested via power traces and fault
injection attacks to compare them with the original challenges
and empirically verify their effectiveness and efficiency.

Index Terms—Fault Injection, Simple Power Analysis, Statis-
tical Power Analysis, Binary Rewriting, Redundancy, operation
shuffling

I. INTRODUCTION

Fault Injection Attacks (FIAs) are exploits on devices that
interfere with the outcome of the device or algorithm by
physically tampering with the device. Various attacks can be
carried out by either meddling with the device’s environment,
like its voltage or the amount of heat the system is exposed
to, or using instruments, such as lasers to target logic gates or
other circuitry. Side Channel Attacks (SCAs) rely on gathering
information by observing hardware or low-level software pro-
cesses and effects. SCAs are attacks that utilize side-effects
of a target computational load and derive information from
it, leaking cryptographic secrets, compromising confidential
data or provide information for usage in other attacks. Our
write-up focuses on power based FIAs and SCAs and their
respective mitigation techniques for each of the 10 challenges
for this year’s ESC challenge. Each challenge presents itself
as a new environment to unravel and understand. During
this competition, our team was exposed to everything from
encryption algorithms to mathematical theorems, pushing us to
look at aspects beyond just code. By examining each challenge

from both the perspective of an attacker and defender, our team
was able to implement counters to possible attacks that could
be conducted, ultimately allowing us to solve every challenge.

II. GENERAL SOLUTION APPROACHES

This section summarizes our general approach to analysing,
patching and verifying each challenge.

A. Challenge Set 1

1) fizzy: The fizzy challenge revolves around the bubble
sort algorithm found in between the trigger high and the trigger
low. A fault injection attack could be performed, skipping over
the super efficient sort method. As a result, the passed in array
would not be sorted, and the original array would be returned.
To remedy this, we added a check in the super efficient sort
method to check if at least 1 swap had been performed. If
this check occurred, this means that no attack had occurred.
Otherwise, if the check did not occur, the super efficient sort
would be called again to make sure a sort occurs.

Another attack would be to perform power analysis on the
swaps within the sort function. Because a power spike occurs
at every iteration of the swap, an attack could analyze the
power trace to deduce how many swaps occur and at what
times. A mitigation to this would be to have a constant swap
happening at periodic intervals to mask the power spikes of
relevant swaps, preventing attackers from detecting the swaps
of values in the array. This concept was implemented by
creating a dummy array and performing a swap, either on the
data array or on the dummy array, on every iteration of the
nested loop. This constant power use masks the actual power
usage caused by the legitimate swaps and prevents power
analysis from yielding useful information for this challenge.

2) err0r: The err0r challenge is a CRC32 calculation
between trigger high and trigger low where the attacker wins if
the two Error Correcting Code (ECC) values calculated from



the same input do not equal each other. As such, we observed
that introducing a fault into one of the two CRC32 calculations
would result in successfully exploiting the challenge. A clock
or power glitching attack could skip over an instruction in the
calculation of one of the two ECC values, causing them to
mismatch at the end.

Hence, our goal was to make sure the ECC values always
equal each other for the same input. To enable this, we
calculated the ECC value a random additional number of times
via the rand() function and stored them in a variable length
array. We ensured that the total number of ECC values are odd
to ensure that there is a mode among the values. By setting the
final two ECC value variables equal to the mode of the array,
we set the final ECC value variables to be the most likely
accurate calculation and ensure their equality. The mode of
the calculated values is used due to the assumption that a fault
injection attack cannot occur during the calculation of every
ECC value due to the random number of such calculations
that occur at every execution of the code.

3) recall: The recall challenge revolves around a compari-
son loop found between the trigger high and trigger low. The
comparison loop checks an unknown array with secret values
to another array provided as an input. If each value at the
same index between the two arrays matches then the flag is
written to the simple serial output. However, if a single value
between the two arrays is different then the loop breaks and a
failure output is written to the simple serial output. As such,
this program functions as a password checker comparing the
input to a secret value in the correct_mem array.

As we observed from the power trace of the original
source code, the check for each value between the two arrays
has a different power trace when the values match and the
loop continues as compared to a mismatch of values which
immediately ends the loop. This difference can be used to
conduct a power analysis based attack as it would leak which
of the input array values did not match the correct value.
Such an analysis would enable brute force enumeration of the
correct input by working one value at a time over multiple
executions of the program. As such, we mitigated this issue
by leveraging the nature of boolean comparison in C where
all positive values above 0 are considered true. As such, we
introduced an unused counter variable and incremented
either the counter or the mem_different variable for
each comparison between the input array and the secret
array. As such, the loop always runs for the same number
of iterations and the mem_different variable serves the
same function after the comparison loop. This prevents power
analysis from revealing which iteration of the loop modifies
the mem_different variable, preventing an attacker from
deducing which input value matched or did not match the
secret values in the correct_mem array.

4) CRT: The CRT challenge, as hinted at by the name, is
an RSA signature calculation based on the Chinese Remainder
Theorem (CRT). As such, the binary flashed onto the target
board is used to calculate the two values that are used as
inputs to the Chinese Remainder Theorem algorithm utilizing

the target board as a co-processor in the cryptographic signing
process. In doing so, the modular exponentiation function
serves as a vector for power analysis in terms of how many
times modular multiplication is carried out being dependent
on the input values.

Research has shown that RSA optimized via CRT is vul-
nerable to both fault injection and power analysis attacks [1],
[2]. As the recombination step of CRT is not present within
the challenge binary, a fault injection attack would fall outside
the scope of patching the binary as code changes will need to
be implemented in the recombination step as well [1], [3], [4].
However, in order to mitigate the power analysis attack vector,
message blinding exponentiation can be used [1]. To do so,
we modified the modular exponentiation function to generate
a random mask, perform message blinding exponentiation
and finally removed the random mask to return the expected
output. This modification was made by implementing the
algorithm for exponentiation detailed in [3] and described in
figure 1.

Fig. 1. Exponentiation algorithm immune to DPA, SPA and Timing Attacks
as detailed in [3].

B. Challenge Set 2

1) casino: Casino is a prime candidate for a power analysis
attack. The draw function is vulnerable specifically, as it has
varying iterations based on the number in the array. This would
allow an attacker to determine the number at each index by
the length of the related power spikes in the collected trace.
Because the draw function’s iterations are dependent on the
number found in the array, the power draw will vary based on
each number in the secret array. This would allow for a power
analysis attack by reading the power draw graph to deduce the
order of the known values within the secret array.

The mitigation technique implemented is found in the
draw method which mitigates the vulnerability by finding
the maximum number present in the array and setting that
as the constant number of iterations for the nested inner
loop. Because the max number is 150, the inner for-loop will
always iterate 150 times, regardless of what is in the array.
Additionally, a dummy variable is created, y, which is the
same number as x. To replicate the j < arr[i] functionality, an
if is added in the inner for loop. If j < arr[i], x is multiplied
by j, like it originally was. However, once j >= arr[i], y
is multiplied by j, replicating the same power draw for the
remaining 150 − arr[i] iterations. This hinders the attackers
ability to analyze the power consumption because the draw



Fig. 2. Mitigation technique implemented in draw method to generate a
consistent power trace.

will be at a consistent level per iteration of the loop, masking
the legitimate power consumption of the original functionality
provided by the draw function.

Additionally, a slight vulnerability was found in the
casino function. simpleserial_put(’r’, n, arr)
was called after the draw function, which inadvertently leaks
data. Taking the output of that function and providing it as
input to the verify function gives you the flag allowing the
attacker to retrieve the flag without performing any kind of
SCA or FIA. This was patched by removing the line of code
from the program.

2) FIAsco: The FIAsco challenge is an AES function that is
vulnerable to Fault Injection Attacks (FIA) as hinted at by the
name. Research has shown that a simple AES implementation
is vulnerable to Fault injection as well as a variety of power
analysis attacks [5] [6] [7]. In terms of FIA, inserting a fault
within the AES encryption performed by any AES library
included via the “independant.h” header file can yield faulty
cipher texts for known plain texts [5], [6]. These faulty results
can be used to derive the encryption key used for encryption.
Power analysis can also be utilized independently as well
as alongside Fault injection in order to compromise AES by
narrowing the search space for bits of the AES key used to
perform encryption [6].

As the AES encryption is implemented within any AES
library that the challenge source code can be compiled with
and due to the naming of the challenge hinting at Fault Injec-
tion, we concerned ourselves with mitigating Fault Injection
Attacks. Such a mitigation can be done without modifying the
underlying encryption implementation. However, mitigating
power analysis would require significant modification or a re-
implementation of the entire AES cryptosystem to implement
masking as described in [8] and [5]. As such, the mitigation
efforts for this challenge focused on implementing a random-
ness based fault detection and infection process before the
encrypted cipher text is outputted [9]. To do so, between
the trigger high and trigger low functions, each encryption

function call was carried out twice. After two encryptions,
the difference between the two cipher texts was calculated
to isolate the injected fault and its effect on the encryption.
This difference was then diffused via a diffusion function and
magnified via a set of random values to infect the cipher text
in a non-deterministic fashion. This diffusion yields a new
cipher text that is the correct cipher text in the event of fault
free execution and masks the effect of an injected fault in the
case of an FIA [9]. This process is represented by figure 3
and implemented by us as described in figure 4. In figure 4
M represents a random number matrix of equivalent size to
the AES state where M ̸= 0. The resulting Γ is the diffusion
result that is XORed with each of the two independent cipher
texts of the same input, one of which is returned as the output
of the existing encryption function from the original source.

Fig. 3. Infection countermeasure against Fault Injection in AES as detailed
in [5].

Fig. 4. Diffusion function for fault infection based on random values as
detailed in [9].

3) search: The search challenge is about avoiding power
analysis attacks during binary search. The program randomly
deletes six values from the given array, and then uses binary
search to find an input value within the remaining array.
An attacker wins if they can successfully figure out which
elements from the array are missing, which can be done by
finding the difference in power spikes between binary search
finding and not finding a value in the array.

The key to the patch is to mask the power trace of the binary
search such that all instances of the binary search create the
same number of power spikes regardless of input. To do this,
we created a dummy copy of the array and the binary search
function. The difference in binary search between a found and
not found value is log2(n)−x power spikes, with n being the
length of the array and x being the number of recursive calls
to binary search. In this case, n is 249 to match that of the real
binary search. Then we keep track of how many recursive calls
binary search took to find or not find a value. If the value was



not found, we call the dummy binary search that is equivalent
to binary search in terms of power consumption, but only do
so log2(n)−x times to add to the power spikes caused by the
binary search function. This ensures that log2(n) power spikes
are caused by every main call to the binary search function.

C. Challenge Set 3

1) NotSoAccessible: The NotSoAccessible challenge is a
SIMON encryption function that is vulnerable to power anal-
ysis based reconstruction of the secret key due to partial
knowledge of the key as found in the challenge source code.
Research has shown that a simple SIMON implementation is
vulnerable to power analysis attacks such as Differential Power
Analysis [10], [11].

Fig. 5. First-order boolean masking based round function of SIMON based
on random masks as detailed in [11]

As such, the mitigation efforts for this challenge focused on
implementing a randomness based first-order boolean masking
algorithm in the 25th round of the encryption. The 25th round
of the encryption was used due to the trigger_high and
trigger_low functions being present within this round
only. The masking scheme utilized, which is empirically
proven to be resistant to power analysis attacks with a high
number of traces, is described in [11] is shown in figure 5.

2) calc: The calc challenge was a set of calculation func-
tions that produce distinct power usage while computing based
on the provided input on a copy of the secret array of values.
As such, we observed that using multiple operations and
collecting power traces for each of them may allow reverse
engineering the values that the secret array started with. Hence,
we found this challenge to be vulnerable to power analysis
based deduction of secret values by modeling the functions
and solving that model via power traces.

As such, to solve the challenge, we patched the source code
such that every function performs the same computation while
randomly shuffling the moment that the relevant operation for
each function occurs within its execution. This was achieved
by using multiple copies of the manipulated array and shuf-
fling the order of independent operations via random number
generation per function call.

3) homebrew: The homebrew challenge was a custom
encryption function utilizing two S-boxes for substitution as
well as a few key dependent operations for permutation. This
was also hinted at by the title of the challenge referencing a
”homebrewed” or custom solution to encryption. As such, by
examining the implementation of this encryption system, we
made a few observations. The S-boxes themselves may lead
to possibly weak substitution values that would be relevant to
a traditional statistical attack on the cryptosystem. However,
the bits of the key and the conditional statement based on that
bit are more relevant to side channel based attacks. As such,
a 1 bit in the key leads to a more computationally intensive
set of manipulations on the relevant byte of the plain text as
compared to a 0 bit in the key. By observing this and by
running a power trace via a compiled version of the source
code using various dummy key values, we found that this
challenge binary would be vulnerable to power analysis due
to power spikes correlating to bits of the encryption key.

As such, to solve the challenge, we patched the source code
such that both parts of the conditional are computed at every
iteration of the loop and the plain text is only modified once
via a simple value assignment. As this value assignment is
conditional on the bit of the key, it is equivalent to the original
source code in function. However, by executing the same set of
computations at every iteration, regardless of the value of the
key bits, we make the power traces of each iteration identical.
As such, any differential or statistical power analysis on the
encryption operation is prevented by masking the power usage
and its dependency on the bits of the encryption key.

III. EXPERIMENTAL VERIFICATION OF PATCHES

A. Challenge Set 1

1) fizzy verification: In order to verify our patch for the
fizzy challenge, we employed a Jupyter notebook that com-
piles, programs and interfaces with the original challenge
source code as well as our patched source code on the
Chipwhisperer Nano. The original source code is compiled and
used to demonstrate the original power trace. By examining the
original source code power trace, we can see varying spike and
dips in power draw, caused by varying power usage. Such a
power trace that enable identifying the bits of the sort function
and the original, unsorted array. If we examine the power trace
of our fizzy patch, we can see that the power trace is uniform
as a function of the constantly swapping dummy array values
used inside the sort function. The consistency of power draw is
clearly visible in the rectangular, uniform shape of the graph.
This effectively masks the legitimate power draw, deterring
the attacker from performing power-analysis and retrieving the
flag from the program. Additionally, we have shown that the
functions produce identical outputs. The only difference is that
our patch produces a power analysis resistant power trace.

As such, by comparing the power traces and outputs of both
programs for the same input values, we have shown that the
functions produce identical outputs but our patch produces a
power analysis resistant power trace, verifying our solution.



Fig. 6. Top - Power trace of original fizzy program. Bottom - Power trace
of patched fizzy program.

2) err0r verification: The err0r challenge was verified with
a Jupyter notebook by using it to compile and program the
patched code in comparison to the original on the Chipwhis-
perer Nano. The code original code is first compiled with
dummy values and a power trace was captured as a control to
compare that of the patched code.

The goal was to make sure that faults that occur do not
prevent the power traces of the original and patched code
from matching, so the ECC values will always match despite
any faults that occur. Even after forcing faults to occur with
the patched code, the power trace still matches the original,
showing the original, correct ECC values are output and any
faults were unsuccessful.

3) recall verification: To verify the patch for the recall
challenge, a Jupyter notebook was used to compile, program
and interface with the original code compared to the patch on
the Chipwhisperer Nano. The code is shown through a power
trace graph. The varying power spikes and dips caused by the
different usage of the code can be examined to identify when
the comparison loop begins and ends.

Examining the power trace, it can be seen that in the original
code source, there a portion where the usage is intensified
and is uniformly being used. This clearly indicates that the
comparison loop is currently in its process. The uniformity in
the middle of the of the power trace easily enables the identify
the bits of the private array. However, by examining the power
trace of the patch, there no specific distinguish shown when
the comparison loop is ran. There are large spikes and dips
evenly spread, thus masking the execution and process of the
function. As such, by comparing the power traces and outputs
for the original, it produces identical outputs identical outputs.
However, the patch produces a power analysis resistant power
trace, thus verifying our solution.

4) CRT verification: In order to verify our patch for the
CRT challenge, we employed a jupyter notebook that com-
piles, programs and interfaces with the original challenge
source code as well as our patched source code on the
Chipwhisperer Nano. This is done via two source code files,

which both utilize the same private primes p = 13 and q = 23
as well as having the relevant dp and dq values. As such,
for identical plain text inputs, running the programs should
yield identical results via the value output on the simple serial
interface.

Fig. 7. Top - Power trace of original CRT program with p = 13, q = 23
and the relevant dp and dq values. Bottom - Power trace of patched CRT
program with p = 13, q = 23 and the relevant dp and dq values.

The original source code was compiled and used to demon-
strate how these specific private primes lead to a specific power
trace for a specific input as shown in figure 7. The patched
source code was also compiled and used to demonstrate how
these specific private primes lead to a specific power trace for
the same input as shown in figure 7 as well. By examining the
original source code power trace, we can clearly distinguish
that the original challenge code produced a power trace that
enables identifying the bits of the private exponent used within
the modular exponentiation function. However, by examining
the power trace produced by our patch source code, we can
observe that the power trace is uniform as a function of the
random masking value used for both executions of the modular
exponentiation function. As such, by comparing the power
traces and outputs of both programs for the same private
primes and the same input, we have shown that the functions
produce identical outputs but our patch produces a power-
analysis-resistant power trace. This observation coupled with
the empirical evaluations done by the authors of [3] provide
our verification for this challenge solution.

B. Challenge Set 2

1) casino verification: A Jupyter notebook on the Chip-
whisperer Nano was used to verify the patch for the casino
challenge by compiling, programming, and comparing the
power traces of the original code to those of the patched
code. We initially compile the code with known values. In
the case that values are variable, we use dummy values. For
this challenge, attacks would have to retrieve the flag through
examining the power trace. The initial power trace graph
shown is the power trace of the unpatched casino file, and
upon analysis, the flag is retrieved.



Fig. 8. Top - Power trace of original casino program. Bottom - Power trace
of patched casino program.

We verify our patch by setting our casino patch as the testing
board. The power trace shown from running the casino patch
is shown above. There are significantly more peaks present in
the power trace as well as more consistency, likely from the
alternate implementation of the draw function, which runs 150
iterations for each element in the array. The consistency ef-
fectively masks the true power trace of the original unpatched
code, making it significantly more difficult for attacks to do
power analysis. Additionally, upon running the program to
attempt to retrieve the flag, we are met with ”r00”, which
is the incorrect flag, verifying that our patch works.

2) FIAsco verification: In order to verify our patch for
the FIAsco challenge, we employed a jupyter notebook that
compiles, programs and interfaces with the original challenge
source code as well as our patched source code on the Chip-
whisperer Nano. This is done via two source code files, which
both utilize the same TinyAes128 library as well as the same
AES key value of 0xdeadbeef . As such, for identical plain
text inputs, running the programs should yield identical cipher
texts as well as using identical AES libraries for computation.

A

B

C

Fig. 9. A - Fault Free output from both the original and patched FIAsco
programs for a specific key and plain text. B - Fault injection based output
from the original FIAsco program for a specific key and plain text. C - Fault
injection based output from the patched FIAsco program for a specific key
and plain text.

We collected power traces of both program executions to
analyze them as well as collecting a fault free output of
both programs for the same plain text proving them to be
functionally identical as shown in figure 9. The original source
code was compiled and used to demonstrate how the specific
key value and plain text along with an injected fault during the
encryption process leads to a specific kind of faulty output as
shown in figure 9. The patched source code was also compiled

and used to demonstrate how the same key value and plain
text along with an injected fault during the encryption process
leads to a specific kind of faulty output as shown in figure 9 as
well. By comparing the original and patched program power
traces over the same number of samples, we can observe that
they provide identical power traces for execution of the same
AES library functions. However, by examining the power trace
produced by our patch source code during its entire execution,
we can observe that the patched program executes the same
encryption twice and then produces a variation in the power
trace while executing the randomness based fault diffusion
function. As such, by observing how a fault propagates within
the same plain text during encryption between the two program
as well as their respective power traces, we can see that the
fault is diffused based on randomness in our patched program.
This observation coupled with the empirical evaluations done
by the authors of [9] provide our verification for this challenge
solution.

Fig. 10. Top - Power trace graph of original search program. Bottom - Power
trace graph of patched search program.

3) search verification: A Jupyter notebook on the Chip-
whisperer Nano was used to verify the patch for the search
challenge by compiling, programming, and comparing the
power traces of the original code to those of the patched
code. Since the hackers win if they correctly guess which
values were removed from the array, they can perform a power
analysis attack and find the outlying dips and spikes in the
power trace graph and figure out the values. Therefore, the goal
was to remove the odd dips and spikes and make a uniform
power trace graph no matter if the value was found or not.

As shown in figure 10, the power trace graph of the original
code has distinct dips and spikes that give away the values
when they are not found by the search function. The bottom
power trace graph in figure 10 is of the patched code after
various faults occurred. The power trace of the patched code is
very uniform, especially when compared to the original code,



demonstrating that there are no dips or spikes to give away a
value that is not found in the array. Ultimately, figure 10 shows
that the patched code is successful in hiding the abnormalities
in the original code’s power trace that reveals the removed
values in the array.

C. Challenge Set 3

D. NotSoAccessible verification

In order to verify our patch for the NotSoAccessible
challenge, we employed a Jupyter notebook that compiles,
programs and interfaces with the original challenge source
code as well as our patched source code on the Chipwhisperer
Nano. This is done via two source code files, which both use
the same dummy key to encrypt supplied plain text. As such,
for identical plain text inputs, running the programs should
yield identical cipher texts computed using the same key.

We collected power traces of both program executions to
analyze them by running them with the same input plain text
to get the same output cipher text. By comparing the obtained
power traces, we observed a noticeable change in the power
trace that showcases the 25th round of the encryption using the
boolean masking scheme. As such, by comparing the power
traces and outputs of both programs for the same encryption
key and the same input, we have shown that the functions
produce identical outputs but our patch produces a power-
analysis-resistant power trace. This observation coupled with
the empirical evaluations done by the authors of [11] provide
our verification for this challenge solution.

E. calc verification

In order to verify our patch for the calc challenge, we
employed a Jupyter notebook that compiles, programs and
interfaces with the original challenge source code as well
as our patched source code on the Chipwhisperer Nano.
This is done via two source code files, which both use the
same dummy key to seed the Random Number Generator
via srand(). As such, for identical input scalars, running
the challenge program should yield different power traces per
operation. However for our patched program, for identical
input scalars, the power traces for all operations should be
equal and distinct from the challenge program traces due to
the injected randomness.

Fig. 11. Top - Power trace graphs of original calc program for all commands
except verify. Bottom - Power trace graphs of patched calc program for all
commands except verify.

We collected power traces of both program executions to
analyze them by running them with the same input scalar from
the initial program state for all operations. We then overlaid
these power traces for each operation on the same graph
to demonstrate the differences in power trace by operation
executed as shown in figure 11. By comparing the obtained
power traces, we observed that while the challenge program
had distinct power traces, the patched program had an identical
power trace for each operation. As such, we have shown that
at the cost of a constant increase in computation, our patch
produces power-analysis-resistant identical power traces for all
commands.

1) homebrew verification: In order to verify our patch for
the homebrew challenge, we employed a Jupyter notebook that
compiles, programs and interfaces with the original challenge
source code as well as our patched source code on the
Chipwhisperer Nano. This is done via two source code files,
which both use the same key to encrypt supplied plain text.
As such, for identical plain text inputs, running the programs
should yield identical cipher texts computed using the same
key.

We collected power traces of both program executions to
analyze them by running them with the same input plain text
to get the same output cipher text as shown in figure 12. The
original source code was compiled and used to demonstrate
how a key led to a specific power trace for a specific input
as shown in figure 13. The patched source code was also
compiled and used to demonstrate how the same key led to a
specific power trace for the same input as shown in figure 13
as well. By examining the original source code power trace,
we can observe that there is a difference in the power trace
for sections using a 1 bit from the encryption key as opposed
to using a 0 bit from the encryption key. This information
allows an attacker to correlate power spike patterns to bits
of the encryption key, leveraging this to leak the encryption
key in the process. However, by examining the power trace
produced by our patch source code, we can observe that the
power trace is uniform as both calculations for a 1 or 0 bit
in the encryption key are carried out every time. As such,
by comparing the power traces and outputs of both programs
for the same encryption key and the same input, we have
shown that the functions produce identical outputs but our
patch produces a power-analysis-resistant power trace.

Fig. 12. Cipher text output from both the original and patched Homebrew
programs for key 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 and a specific plain
text.

IV. LIMITATIONS

Throughout this competition, our team experienced multiple
issues and obstacles.

One big issue was that the Chip Whisperer Nano software
would not download the gcc package on one of our computers,
so we could not use that computer to compile code with



Fig. 13. Top - Power trace of original Homebrew program with
key 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 and a specific input plain
text. Bottom - Power trace of patched Homebrew program with key
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 and a specific input plain text.

the Jupyter notebooks. The issue was remedied by sharing
snapshots of Jupyter notebooks through either HTML files
or images. This allowed those without access to the Jupyter
notebook to continue making contributions and discussing
flaws in the verification processes with the team.

Additionally, the ChipWhisperer software had missing sec-
tions and folder content. For instance, there were no tutorials
present in the tutorial folder. Had there been tutorials present,
it may have been easier for some of our team members to
understand the possible attacks and implement patches.

The limitation for the err0r challenge is that the patch is not
the most efficient solution, as it repeats the ECC calculation
multiple times and forces the CRC32 error correcting codes
to equal each other via the introduced redundancy.

The fizzy challenge had multiple failed approaches to de-
fend against possible attacks. One prominent compilation error
occurred because the checks were being defined using rand(),
a function that occurs during runtime. This was fixed simply
by defining both checks as 0 and reassigning them to rand(),
later in the program.

The casino challenge was run under the assumption that the
simpleserial_write function was intended by CSAW
to be patched and now just a typo in the original code.
As explained in the casino write-up and verification, the
simpleserial_write function occurring after the draw
function gave out the key wouldn’t needing any kind of SCA
or FIA to be performed. This was patched by removing that
line of code from the patched casino file.

Finally, implementing the use of srand() and rand()
functions within our patches to introduce randomness does
not allow for a good seed value via the time() function
due to the target board. As such, a true random seed for
effective random value generation was not available to use
in our patches.

V. CONCLUSION

In this paper, we detailed how we as a team approached
each of the three challenge sets for the CSAW ESC 2021
competition. As such, we described how we reasoned about
each challenge and our approach to mitigating the vulnerabil-
ities in each source code. We showed how we utilized source
code analysis, dynamic analysis via power tracing as well as
various research work to inform our mitigation approaches.
In patching each source code, we focused on writing effi-
cient mitigation code that would not be optimized during a
compiler optimization process which would negatively impact
the expected results of our work. Further, we described our
verification of each challenge patch via the ChipWhisperer tool
chain. We used this tool chain to compile patches, program
the ChipWhisperer Nano target board as well as run power
traces and fault injections to empirically verify our mitigation
implementations. In this way, we solved each challenge by
going through an analysis, patching and verification process
as detailed in this paper.

VI. ACKNOWLEDGEMENTS

We would like to thank our team advisor Allen Stewart for
his guidance and valuable feedback on our final report.

REFERENCES

[1] J. Ha, C. Jun, J. Park, S. Moon, and C. Kim, “A new crt-rsa scheme
resistant to power analysis and fault attacks,” Convergence Information
Technology, International Conference on, vol. 2, pp. 351–356, 11 2008.

[2] P. Luo, L. Zhang, Y. Fei, and A. A. Ding, “Towards secure cryptographic
software implementation against side-channel power analysis attacks,”
in 2015 IEEE 26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2015, pp. 144–148.

[3] C. Kim, J. Ha, S.-H. Kim, S. Kim, S.-M. Yen, and S. Moon, “A
secure and practical crt-based rsa to resist side channel attacks,” in
Computational Science and Its Applications – ICCSA 2004, A. Laganá,
M. L. Gavrilova, V. Kumar, Y. Mun, C. J. K. Tan, and O. Gervasi, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 150–158.

[4] H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient countermeasures
against rpa, dpa, and spa,” in Cryptographic Hardware and Embedded
Systems - CHES 2004, M. Joye and J.-J. Quisquater, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 343–356.

[5] V. Lomné, T. Roche, and A. Thillard, “On the need of randomness in
fault attack countermeasures - application to aes,” in 2012 Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2012, pp. 85–94.

[6] T. Roche, V. Lomné, and K. Khalfallah, “Combined fault and side-
channel attack on protected implementations of aes,” in Smart Card
Research and Advanced Applications, E. Prouff, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 65–83.

[7] J. Park, “Differential fault analysis for round-reduced aes by fault
injection,” ETRI Journal, vol. 33, no. 3, p. 434–442, 2011.

[8] H. Mestiri, F. Kahri, B. Bouallegue, and M. Machhout, “A high-speed
aes design resistant to fault injection attacks,” Microprocessors and
Microsystems, vol. 41, pp. 47–55, 03 2016.

[9] J. Zhang, N. Wu, X. Zhang, and F. Zhou, “Against fault attacks based
on random infection mechanism,” IEICE Electronics Express, vol. 13,
no. 21, pp. 20 160 872–20 160 872, 2016.

[10] D. Shanmugam, R. Selvam, and S. Annadurai, “Differential power
analysis attack on simon and led block ciphers,” in Security, Privacy,
and Applied Cryptography Engineering, R. S. Chakraborty, V. Matyas,
and P. Schaumont, Eds. Cham: Springer International Publishing, 2014,
pp. 110–125.

[11] S. Bhasin, T. Graba, J.-L. Danger, and Z. Najm, “A look into simon from
a side-channel perspective,” in 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 2014, pp. 56–59.


