
SWIFT Wireless Fire Alarm Pull Station Analysis
Donald Lawrence

College of Computing
Georgia Institute of Technology
Atlanta, Georgia, United States

dl@gatech.edu

George Kokinda
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

gkokinda3@gatech.edu

Jaewon Jeung
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

jjeung6@gatech.edu

Garrett Brown
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

gbrown94@gatech.edu

Abstract—Building management and fire protection systems
are relatively under-researched areas in the field of cyberse-
curity. A malicious actor could attack one of these systems in
order to cause interruption of functionality, false alarms, and
other dangers to the inhabitants of the building. Honeywell
is a manufacturer of these building management systems, and
this study investigates their Fire Alarm Pull Station and any
vulnerabilities involving it and the overarching SWIFT system.
This is accomplished through analyzing the protocol SWIFT
devices use to communicate, and by finding exploits that a bad
actor would want to take advantage of.

I. BACKGROUND

Fire protection systems are essential components of life-
safety systems, which alert, protect, and assist evacuation of
building populations in case of emergencies. A malicious actor
threatening the occupants of the building may tamper with the
safety systems. Some of the potential malicious activities that
may occur are the following: manipulating logged temperature
and triggering a false alarm, sending misinformation to the
centralized monitoring system to distract a building security
operator, effectively disarming the system without alarming the
controller, and extracting a private key through a cryptography
attack in order to gain privileged access to the system. There-
fore, assessing the attack surface of the system and patching
the vulnerabilities would potentially significantly disrupt the
malicious actors’ planned cyber kill chain.

A. The SWIFT System

Buildings require a centralized management system to op-
erate and monitor numerous sensors and supporting devices.
With the increase of a diverse usage of buildings such as
datacenters, a Building Management System (BMS) that has
automation capabilities to monitor various building systems
became mission critical. Historically, management systems
and their accompanying devices had to be wired together like
any other network. However, over the past decade, there has
been a rise in popularity of wireless management systems,
allowing building owners to retrofit older buildings with newer
systems, or to augment an existing wired system. Honeywell is

a company that produces building support technologies, and a
part of their product suite is called “SWIFT” (Smart Wireless
Integrated Fire Technology) [1]. The product line consists of a
wireless smoke detector and fire alarm pull station, along with
several devices designed to create an interface with other wired
Honeywell products, such as their control panels or sirens [2].

B. Downsides of a Wireless System

The usage of a wireless system comes with drawbacks that
are inherent in any network of wireless devices. Reliability is
a key factor in a building management system, yet without
specific design decisions, a wireless network tends to be
less reliable than its wired counterpart. The SWIFT system
operates through what is known as a “mesh network”, which
is a decentralized method of connecting multiple devices
over a large distance. In order to mitigate any issues with
reliability, each device connects with multiple other devices
in the network, providing multiple paths from a given de-
vice to the primary control panel (Figure 1). The system
is also able to operate over multiple wireless frequencies,
with the capability to dynamically switch between them as
the surrounding environment changes [1]. Honeywell also
provides software that allows for the control and management
of SWIFT devices in a network, aptly called “SWIFT Tool”.
With it, a building maintainer can view the status (battery level,
connection strength, etc.) of various devices in the network,
along with viewing and modifying the layout of the mesh
itself.

II. SWIFT ADDRESSING METHOD

Placing devices throughout the entire building must be
done strategically especially since identifying the location of
the emergency is crucial. Multiple categories of fire alarm
systems are created to address the issue. Fire alarm systems
are categorized into four overlapping types: conventional, ad-
dressable, intelligent, and wireless [3]. Conventional systems
set “zones” through devices connected by non-looping wires
as a means to identify the location. In contrast, an addressable

Garrett Brown
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, United States

gbrown94@gatech.edu

Chris M. Roberts
Advisor

Georgia Institute of Technology
Atlanta, Georgia, United States

chris.roberts@gatech.edu

Fig. 1. The decentralized nature of the system ensures that as little disruption
as possible occurs if one or more devices fail.

Fig. 2. Rotary switches used to set the address of SWIFT devices.

type system connects devices in a loop and assigns each device
an “address” to identify them. Wireless systems incorporate
the addressable system to enhance the flexibility of device
placements. Therefore, the SWIFT system employs a wireless
system and enforces specific addressing constraints.

A. Addressing Constraints

While the SWIFT addressable wireless system can support
up to forty-nine devices with one gateway and allows multiple
gateways, the supported address range is 1 to 159 [4]. The
address is set by concatenating the resulting numbers of two
rotary switches [5] (Figure 2). Therefore, to represent address
159, the “tens” switch will set to 15, and the “ones” switch
will have the value of 9. The decimal values are converted
to binary using the same concatenation logic—15 is 0b1111
and 9 is 0b1001, so 159 is 0b00011111001. The input address
of 160 represented in binary is 0b000100000000, in which
the address loops back to 0. This implies the number of bits
allocated for addressing is eight. The limitation of the range
of the address proves to be useful when analyzing the data the
wireless devices emit since it decreases the scope of protocol
analysis.

III. OTA PROTOCOL

The team has chosen to focus on the SWIFT Fire Alarm Pull
Station in terms of analysis since it’s an easily accessible target
for bad actors to attack. The hardware is relatively cheap to
obtain and easy to maintain, and the SWIFT environment only
requires one device to be able to communicate with SWIFT
Tools.

Much of the team’s protocol analysis has been done using
Universal Radio Hacker (URH). The goal of using URH is

Fig. 3. The pull station’s information inside SWIFT Tools.

to capture and analyze some of the RF (Radio Frequency)
signals being emitted from the pull station. The team found
that a signal is broadcast over-the-air (OTA) from the pull
station every 8 seconds. This signal contains a packet which
holds data regarding the pull station. The data encoded by the
OTA message holds the information seen inside SWIFT Tools
(Figure 3). This includes data such as the address of the pull
station, the serial number, battery information, and more. Due
to it’s OTA nature, the protocol used to encode this data is
referred to as the OTA protocol (or radio protocol).

A. Capturing Method

In order to capture the RF transmissions containing all of
this data, the team has a software-defined radio (SDR) placed
in the same room as the pull station. A SDR is a “radio
communication system which uses software for the modulation
and demodulation of radio signals” [6]. The specific SDR
in use is a HackRF One which gives a user the ability
to analyze signals on the radio spectrum. The pull station
communicates with other devices in the mesh network via RF
signals through its RF transceiver the SemTech SX1231. Ac-
cording to the SX1231 documentation provided by SemTech,
their transceiver usually broadcast (in North America) over a
frequency range of 902-928 MHz which is the ISM (industrial,
scientific, and medical) radio band for North America [7].
The HackRF is capable of receiving and transmitting on a
wide frequency range, but it was found that the pull station
communicates at a frequency of 913 MHz (megahertz) which
is accessible with the HackRF. Once the frequency is set
to 913 MHz inside of URH, the HackRF captured the RF
transmissions originating from the pull station. The SemTech
SX1231 uses FSK (frequency-shift keying) modulation, and
URH allows for this modulation scheme. A samples per
second (sps) or sample rate of 35 is used to match the

Fig. 4. Visual representation of the OTA message structure.

wavelength of the RF transmissions and ensure the signal is
interpreted correctly (i.e., prevents aliasing). By demodulating
the captured OTA traffic, a successful analysis of the signals
has been produced using the tool set provided within URH.

B. Field Analysis

Looking at the raw binary data of the demodulated signals,
the start of the OTA message is indicated by a binary two
(0010). The sequence of 1’s and 0’s before the binary two
and the sequence of 1’s following the OTA message are both
considered garbage data. That specific binary is discarded by
cropping to the selection of data to be analyzed (i.e., the OTA
message). By converting the newly cropped signals to hex, it
can be seen that the OTA message indeed starts with a value
of two because the sequence “21436587” is the preamble or
“sync word” of the message. The general structure of the OTA
protocol is visually represented in Figure 4.

Following the preamble and the payload length, all fields are
exclusive-or’ed (XORed) with 0xAA which acts as a form data
whitening per the SX1231 documentation [7]. The payload
holds the data which populates SWIFT Tools as shown above
in Figure 3. After the XOR operation is performed on the
payload, some of the hex data can be deciphered by converting
hexadecimal values to decimal values which are present inside
the SWIFT Tools interface. For example, when the address of
the pull station is set to 105 on the bottom row in Figure 5,
the hex at nibble 35 and 36 show the address to be “0xC3”,
but after XORing this value with 0xAA, a value of “0x69”
is found, and upon converting “0x69” from hexadecimal to
decimal, the address of the pull station “105” is found (can be
seen as SLC in Figure 3). A similar process is performed on
the values of the other identified fields of the payload (seen
in Figure 5). One exception to this is the serial number of the
pull station. In between the XOR operation and converting
to decimal, a change of endianness must also be performed
on the serial number to find its value. Figure 5 highlights all
the fields labeled inside of the analysis tab of URH that were
found by executing the operations previously described.

C. OTA Protocol Breakdown

The remaining unidentified fields were decoded through a
comparison of the OTA (radio) and USB protocols. The USB
protocol will be examined thoroughly later in the paper. As
it pertains to the OTA protocol, one of the RF transmissions
collected from the pull station is the following:

Fig. 5. OTA message analysis of pull station for address 100 (top row) and
address 105 (bottom row) inside URH.

Fig. 6. General OTA message structure (with hex data from RF transmission).

21 43 65 87 21 9e c4 12 ed c5 b7
6e 92 79 0b d1 93 c3 aa a3 b2 55
ab 8a 7f bd f5 26 58 f9 a4 aa aa
aa aa aa aa aa

This hex data from the OTA message can be initially broken
up into four primary parts: the preamble, the payload length,
the CRC32 (Cyclic Redundancy Check), and the payload. The
preamble is used to indicate the start of an OTA message. It
acts as a ”get ready” notification of sorts for all other devices
that intend to receive the RF transmission. This establishes
a synchronization of bits between two or more devices. The
payload length indicates the size of the payload that follows.
Despite being labeled its own field, the CRC32 is considered
a part of (and thus the start of) the payload. It will be further
defined later. All of this is visualized using the previous RF
transmission in Figure 6.

The payload can be further broken down to reveal the
information seen inside the SWIFT Tools application. In order

Fig. 7. Full breakdown of payload from OTA message (emitted from pull
station).

to more deeply identify the exact fields of the payload, every
byte of hex data following the preamble and the payload length
(i.e., the entire payload) must be exclusive-or’ed (XORed)
with 0xAA as previously discussed. Following the exclusive-or
operation, the hex data now appears as such:

21 43 65 87 21 34 6e b8 47 6f 1d
c4 38 d3 a1 7b 39 69 00 09 18 ff
01 20 d5 17 5f 8c f2 53 0e 00 00
00 00 00 00 00

The data of the payload starting at the first CRC byte 0x34
(which was 0x9e before) until the last byte 0x00 (which was
0xaa before) has undergone this operation. After the XOR
operation, it’s possible to further dissect the payload for the
data used to populate the SWIFT Tools application. One last
thing to acknowledge before decoding the payload is that the
payload length is 0x21 which is equal to 33 in decimal. As
such, the payload should contain 33 bytes of data. Figure 7
illustrates the breakdown and identification of all 33 bytes of
data within the payload.

The first field of the payload is the CRC32 which makes up
bytes 1 through 4. The CRC32 is used as a means of detecting
data corruption or accidental changes to the OTA data. Byte 5
is believed to be the Message Type of the OTA message, but
it remains labeled as “Unknown” as further analysis will be
required to prove this. Currently, byte 6 also remains unknown.
Following bytes 1 through 6, bytes 7 through 33 are identical
to the data captured in the payload of the serial message. To
avoid repetition, the remaining bytes will be analyzed in the
USB Protocol section of the paper. Further, the differences
between the two protocols will be properly examined.

IV. USB PROTOCOL

The wireless USB tool, referred to as the “W-USB”
transceiver, is used as an interface between a PC and the
wireless devices from Honeywell. By plugging in the W-
USB into a computer, the wireless USB dongle can then
communicate information about site survey data from all the
devices in the mesh network by sending and receiving RF
signals. The W-USB can retrieve data of devices within 20

feet of where the W-USB is connected to a PC. The OTA
data that the W-USB collects is used to populate the SWIFT
Tools software which is then stored into a database containing
information about the mesh network and the various devices
that make up the network.

A. Capturing Method

Since the W-USB can send and receive information to and
from the wireless devices within the mesh network, the traffic
can be captured and analyzed. Rather than collecting the OTA
data, the W-USB offers the unique opportunity of analyzing
the traffic over a serial connection. Using a software tool
called Serial Port Monitor to analyze the COM 3 bus traffic
between the W-USB and the SWIFT Tools application, it was
discovered that the serial traffic is similar to the messages that
were emitted over-the-air. The differences stem from the W-
USB taking in the OTA data and slightly altering its format in a
manner that’s suitable for the SWIFT Tools software to parse.
This differing set of rules that governs the communication
between the W-USB and SWIFT Tools is regarded to as the
USB Protocol.

B. Reverse Engineering SWIFT Tools

In order to decode the serial traffic (i.e., the USB Protocol)
captured using Serial Port Monitor, a reasonable approach
would be to analyze how SWIFT Tools is collecting the
serial data and transforming it into readable data inside its
interface. To that effect, reverse engineering SWIFT Tools
was the logical step to take. The SWIFT Tools application is
distributed as an unobfuscated .NET application and support-
ing dynamic-link libraries (DLLs). This makes the application
easier to reverse engineer since all the symbols (imports,
global variables, functions, etc.) are present. Through the
utilization of an open-source .NET decompiler called ILSpy,
a decompilation of the source code for the SWIFT Tools
software was produced. The DLLs were decomplied to C
which allowed the team to dig into exactly how SWIFT Tools
is operating.

Much of the analysis of the decompilation took
place in three dynamic-link library files. These files
are in the installation directory of Swift Tools and are
named: WirelessComm.dll, WirelessInterfaces.dll, and
WirelessPlugin.dll. Each dll file contains code related to
parsing and creating wireless USB messages. The team
uncovered the general structure of all the W-USB packets.
The message structure consists of two different packet frames
an adapter frame and a node frame. This data is found in
“Honeywell.WirelessTool.WirelessComm.ProtocolManager”.
The adapter frame is for controlling the USB adapter itself
while the node frame is for sending and receiving information
from devices within the mesh network. Regardless of the
packet frame type, every message contains an open delimiter
(7B = ‘’), message type (1 byte), payload length (1 byte),
payload (variable length), CRC (XOR of the previous bytes),
and a closing delimiter (7D = ‘’). The node frame has two
extra fields namely the device type (1 byte) and device serial

Fig. 8. Node frame encoding start to USB messages.

Fig. 9. Pull station (left), gateway (bottom), and relay station (right)
information in Swift Tools diagnostics at the time of message capture.

number (4 bytes). The team at this time has decoded several
node frame packet types relating to various devices within
the Honeywell SWIFT ecosystem.

C. Standard Devices

Using ILSpy and investigating the class ”Hon-
eywell.WirelessTool.WirelessPlugin.ScanForm” it
was discovered that two methods in ”ScanForm”
namely ”ScanForm.fillDevcieScanData” and ”Scan-
Form.fillScanDataforDevices” were responsible for parsing
the payload for a majority of the devices. By following along
with the decompiled code, it is possible to identify all fields
of the pull station, relay station, and AVBase payloads.

Bytes 0 through 3 of the payload consists of the device’s
serial number. This is taken and converted to decimal. This
can be seen within the diagnostics section of the SWIFT
Tools software. Each device has a serial number associated
with the hardware. Byte 4 is the node type. This is an enum
class which converts the value to decimal and selects the
appropriate type. The node types consist of various device
name such as but not limited to pull, gateway, relay module,

Fig. 10. Decoded and labeled pull station USB message.

etc. This value sets the device type which later is used for
parsing the rest of the payload. Byte 5 consists of two different
values which are broken up into their respective nibbles,
boot loader version and state. Boot loader version is found
in the diagnostics information. The exact specifics of state
are unknown, however it assigned to an enum class called
NodeState. The pull station’s state at the time of capture
for example was PROFILEASSIGNEDTAMPER. Byte 6 is
the SLC address of the device. This can also be seen in
diagnostics. Byte 7 is a Boolean value that checks if a device
scan result is present. It is set to false if the value is 0 and
true otherwise. Byte 8 is the hardware version and byte 9 is
the software version. These both can be seen in diagnostics.
The way the information is extracted is it takes the byte and
converts it into 8 bits. Then it places a decimal after the second
least significant bit (zero-indexed) for a total of 5 bits to the
left of the decimal and 3 bits on the right. It then converts
both sides to decimal. Byte 10 is the site survey address. At
the time of capture all devices with the same payload structure
had this value set to “NA”. This value is set because the value
within the payload is 0xFF. Byte 11 is the Mesh ID. This
is a simple conversion of the payload hex value to decimal.
Bytes 12 through 15 make up the device’s sync word. This
value is used in other functions when populating the mesh
network. The exact specifics are unknown at the time. Byte
16 is the fire panel brand. This value is converted to decimal
and compared to hardcoded decimal values corresponding to
the different brands in the Honeywell fire alarm ecosystem.
The brands captured were FIRELITE corresponding to the pull
station and NOTIFIER corresponding to the gateway and relay
station. Byte 17 makes up two different battery values. The
most significant nibble pertains to battery inserted booleans.
The devices can support up to four batteries and each bit is
a boolean corresponding to if a battery is inserted into a slot
or not. If a battery is inserted the bit becomes a 1 and if not,
the bit is a 0. An example of this is the pull station at the
time of serial capture. The pull station had all four batteries
connected and so the value is 0xF. The next nibble is the
battery life status. This value is converted into decimal and
matched with an enum class that converts the decimal into a
message that can be seen in Swift Tools Diagnostics. The pull
station, for example, at the time of capture had a battery life
of “More than 6 months.” This message, in the enum class,
corresponds to the decimal value 2. Bytes 18 and 19 are the
application build number and the bootloader build number.

Fig. 11. Decoded and labeled gateway USB message.

These values are directly converted to decimal and are seen the
device information within diagnostics. The application build
number is seen appended to the software release number, and
the bootloader build number is seen appended to the boot
version. Byte 20 is the link test result, and byte 21 is the device
state. The team at this time has not uncovered what these
two bytes represent. Bytes 22 through 24 are utilized by the
AVBase only. These values are skipped (and thus arbitrarily
set to 0x00) in the payload for all devices except the AVBase.
For the AV Base, byte 22 and byte 23 remain 0x00 in the
serial message which produces the message ”No AV Device on
Base” seen in the ”More Info” portion of the AV Base inside
Swift Tools. Further, byte 24 is set to 0xF5 inside the serial
message for the AV Base. This data is then converted to binary
to “11110101” and then divided up by its first five bits and
last three bits to “11110.101”. The first five bits produced the
message “More than 8 Hours of Alarm Time Remaining” seen
inside SWIFT Tools from an enum class. The last three bits
produced the message “Good Batteries” seen inside SWIFT
Tools from an enum class. Byte 25 is a value for RF scan
progress. The exact specifics are unknown currently. Byte 26
is an unknown value. The team’s captured messages all have
skipped this value. The final byte 27 is the is the CRC. The
CRC is formed by performing an XOR every byte after the
start delimiter with every other byte before the CRC’s position
in the payload.

D. Gateway

The gateway’s USB message as immediately seen it is
much longer than the Pull Station or the Relay Station. The
length of the payload is found at byte (3) of the message
0xED = 237 this is significantly longer than the payload
sizes of the other devices which had a length of 28. The
payload begins at byte (5) of the message like the other
devices. Also like the other devices, it was discovered within
the class “Honeywell.WirelessTool.WirelessPlugin.ScanForm”
using the same method “ScanForm.fillDevcieScanData.” How-
ever, within Swift Tools, the gateway message is parsed with
its own separate method, “ScanForm.fillScanDataforGateway.”

As seen in figure 11, many of the gateway payload’s fields
are identical to the other device’s payloads. This is because the
gateway contains many of the same information such as serial
number, device type, software version number, etc. as seen in
Swift Tools diagnostics. At bytes 17 through 230, Swift Tools
parses these bytes as gateway only attributes. Using ILSpy

and following the code within the method “fillScanDatafor-
Gateway” the gateway message can be deciphered.

Byte 17 is a “GatewayMeshAttribute” list capacity. This
value creates several lists for different values at the capacity
internal to Swift Tools. This value will be referenced later in
parsing the payload because the value doubles as a variable
representing the number of devices under the gateway which
can be verified in diagnostics. Bytes 18 through 21 is the
mesh SLC address. Converting this to decimal reveals a list
of mesh SLC addresses, each one byte in length, from the
devices connected to the gateway. At the time of capture
there was four mesh SLC addresses. Bytes 22 through 63 are
filled with a placeholder value 0xFF which denotes the ability
for more devices connected to the gateway. These values are
for more mesh SLC addresses if the gateway had a larger
number of devices connected to it. Bytes 64 to 76 are a list
of serial numbers also pertaining to the devices connected
to the gateway. There are four in total and each are 4 bytes
long. The serial numbers, when converted to decimal, are not
equivalent to the ones found in the Swift Tools diagnostics.
The team does not know why this is. Like the mesh SLC
addresses, bytes 77 through 227 are placeholder values for
more device serial numbers. The next couple bytes are bit
vectors. These bytes are converted into binary and each bit or
consecutive bits determine a value. Byte 228 is a bit vector
that when converted to binary, bits 0 through 5 are boolean
values. Starting from bit zero to five the boolean values are
“isInterference,” “isMaxGatewayTrouble,” bits 3 and 4 are
skipped, “bIsTrafficOn,” and “bIsWeakLinkTroubleOn.” The
exact details of these values are unknown. Bits 6 and 7 is
magnet lock status. These two bits are converted into decimal
then set using an enum class for the magnet lock status.
The lock status of the gateway at the time of capture is
“MagnetVerified.” This is apparent when you enter a password
for the gateway in diagnostics. If you enter a correct password
a magnet must physically be placed on the gateway in order
to gain access to gateway information. Continuing, byte 229
is also another bit vector. Bits 0 through 2 correspond to
an “M2MSyncStateMode” enum class. The values this class
represents are not known at this time. Bit 3 corresponds
“bIsSyncTroubleReportingOn.” Bits 4 and 5 make up the value
for the gateway’s wireless enabled mode enum class. This
value is seen in diagnostics as “WEP for SWIFT 2.0 panels.”
Bit 6 is a boolean pertaining to device count being exceeded.
Bit 7 is the value “isProfileDistribution.” Byte 230 is the
lock time remaining. this is not converted into decimal and
the string ” minute(s)” is appended to it. Since the magnet
lock status is “MagnetVerified,” It checks a locking tracker
list for a serial number that equals the gateways. It sets
”UnAuthenticated” if it does not find one. This is shown as
Login Time Remaining in the UI. Bytes 231 and 232 make
up the RF application build number and SLC application
build number, respectively. There are seen appended to their
respective “FW Ver” in diagnostics. The next bytes 233 to 236
are equivalent to what was previously shown in the previous
devices. These bytes make up the bootloader build numbers

Fig. 12. Window asking for a gateway password in Swift Tools diagnostics.

and CRC in the same locations as the pull, relay, and AVBase
messages.

E. Other Messages

The message type makes up the second byte of every serial
message. The message types discussed for the devices are
of the value 0x04 which gets translated, within the “Mes-
sageType” enum class, to “BackGroundScanResponse.” These
messages are transmitted frequently and periodically through
the COM 3 bus. This message generally contains data about
the device information. Other message types have been found
by the team.

One of these messages is “VarifyPasswordRequest.” This
message is sent when one enters a password for the gateway
in diagnostics see figure 12. This message follows the node
frame packet structure and has been deconstructed by the team.
Byte 0 contains the open delimeter. Byte 1 is the message type
“VarifyPasswordRequest.” Bytes 2 and bytes 3 through 6 is
the node type which is the gateway and the serial number for
the gateway, respectively. Byte 7 is the payload length which
is converted into decimal. Byte 8 is a constant value 0x20.
This field is unknown however it does not show when a user
inputs the maximum number of characters which is eight for
the password. The next field is variable in length as matches
the inputted password length. The password can be viewed
with a simple conversion from hex to ASCII. The password is
sent through the COM 3 bus in clear text. Then like the other
messages you have a CRC and closing delimiter bytes.

Other messages have been captured by the team. These mes-
sages include “VarifyPasswordReply” and “NetworkTopolo-
gyStatus.” The “VarifyPasswordReply” message can be cap-
tured when a user enters a correct password, and the magnet
is placed on the gateway. The message “NetworkTopologyS-
tatus” is captured when the user successfully authenticates
by entering the correct password to the gateway and views
the mesh network shown in SWIFT Tools diagnostics. These

Fig. 13. Snippet of MessageType enum in ILSpy.

messages have yet to be analyzed and further research is
needed. There are also many more message types that can
be captured and analyzed. This just scratches the surface as
there are many more enums in “MessageType.”

F. USB and OTA Protocol Comparison

The USB and OTA protocols are nearly identical in terms
of payload. This similarity led to the decoding of the OTA
protocol by simply comparing the hex data of the serial and
OTA messages. A side-by-side comparison after the XOR’ing
of the OTA data can be seen in Figure 14. The differences
between the two protocols are highlighted in red, and the
similarities are highlighted in yellow. Further, the data high-
lighted in blue (for USB) and green (for OTA) illustrates the
differences within the same protocol when the pull station is
set at different addresses (addresses highlighted in pink). The
payload structure of the messages is the same starting at the
0xC4 byte all the way to the last 0x00 byte of data (i.e., 26
bytes are identical). This encompasses nearly all the fields
within the OTA message’s payload that have been identified.
This means that the W-USB sends most of the payload over
serial (to populate SWIFT Tools) in the exact same format
in which the devices on the mesh network send RF signals
(OTA messages) to the other devices on the network (including
the W-USB). The differences between the two protocols can
really be boiled down to three things. One difference is the
USB protocol’s use of a start delimiter instead of the preamble
which the OTA protocol utilizes. Both the start delimiter and
preamble serve the same purpose which is to indicate the start
of a message (allows for the synchronization of bits). They
just come in different formats. The second difference is the
size and location of the CRC. The USB protocols includes
a one-byte CRC at the end of the payload, while the OTA
protocol includes a four-byte CRC at the start of the payload.
Once again, they both serve the same purpose of ensuring the

Fig. 14. USB Traffic Compared to OTA Traffic.

Fig. 15. Diagram of com0com virtual COM port connection layout.

data hasn’t been corrupted during its transmission, but their
appearances slightly differ. Thirdly, the USB protocol uses an
end delimiter to indicate the end of the message. The OTA
protocol hasn’t been proven to use any type of end delimiter,
although it’s worth noting that following the OTA message
there’s a sequence of 0xFF’s which is really 0x55’s after the
XOR operation takes place. Currently, no relation has been
shown between these additional bytes and the OTA message.

V. PROTOCOL FUZZING

An effective method of analyzing an API or protocol is
through the use of a “fuzzer”, which is a program that provides
random data for certain parameters in order to cause a crash or
some other interesting behavior. This method is especially use-
ful for testing the equipment and SWIFT Tools software, since
unexpected behavior and interruptions of service would be the
goal of a malicious actor. Because the previous semester’s
team focused on the OTA protocol through URH, the team
decided that it would be best to target SWIFT Tools and
attempt to send data from the W-USB adapter instead.

A. Serial Fuzzer

In order to send custom data to SWIFT Tools, the fuzzer
must mimic the W-USB adapter’s behavior, which uses a COM
port for communication. To replicate W-USB’s behavior, a
Python module called ‘pyserial‘ is used to develop the fuzzer.
‘pyserial‘ can open, read from, and write to a COM port.
However, the naı̈ve approach of simply opening a port to
communicate with SWIFT Tools does not work. SWIFT Tools
also opens a port when it attempts to communicate, but once
a port is opened by an application, another application cannot
open the already-occupied port. This leads to a port conflict,
which can be mitigated by com0com Null-modem emulator.

Fig. 16. A pull station without any battery sending an update.

A project called com0com Null-modem emulator is the
software of choice to communicate directly to the SWIFT
Tools. It can ”create an unlimited number of virtual COM
port pairs and use any pair to connect one COM port-based
application to another. The output to one port is the input
from other port and vice versa” [8]. Using the emulator as a
virtual adapter, the Python fuzzer script can open a port while
allowing SWIFT Tools to open a port concurrently. Python’s
serial module would be able to input data into one of the
paired ports, and the other port would act as an interface
between SWIFT tools and the Python script where the data
is exchanged (Figure 15).

To find a device to communicate with, SWIFT Tools sends a
5-byte long conversation initiation message (7b 13 00 13 7d)
on available COM ports sequentially. When an appropriate
listener (e.g., W-USB adapter) receives the initiation message,
it replies to SWIFT Tools with a 7-byte response message (00
00 7b 14 00 14 7d). Once SWIFT Tools receives a response
from one of the ports, it proceeds to send an 11-byte long
data (7b 49 46 00 00 00 00 01 00 0e 7d). Finally, the W-USB
adapter responds with an at least 5-byte long acknowledgment
message (7b 01 00 01 7d) to complete the handshake. Once
the handshake ends, the W-USB adapter periodically sends
updates regarding the fire alarm system devices’ status. The
conversation data was captured using Serial Port Monitor in
order to analyze what kind of behavior the Python script
should imitate to spoof the W-USB adapter. Since the byte
sizes and the contents of the initiating handshake have been
discovered, the Python script could utilize ‘read(byte num)‘
and ‘write(bytes())‘ methods to replicate W-USB’s behavior.

After the initial handshake, SWIFT Tools expects fire alarm
system devices’ status messages. At this stage, simply sending
in a previously known status message will populate SWIFT
Tools’ device discovery GUI pane. For instance, modifying the

Fig. 17. Diagram of com0com virtual COM port connection layout for the
MITM script.

message field indicating the battery status to 0x2 will cause
SWIFT Tools to add a seemingly normal device but without
any battery (Figure 16). This leads to a possibility where the
script can spoof any device with any device configuration and
condition. Changing a field incrementally manually, however,
is a time-consuming process. Therefore, the script includes
a mode where it can generate a combination of messages in
which only a certain field differs. If the user wishes to modify
the first byte of an example message, aabbcc, the user can
provide a range of sub-messages such as 0x1 to 0xf. The script
then generates a following combination of messages: 01bbcc,
02bbcc, 03bbcc. . . 0fbbcc. Then instead of repeatedly sending
in a single message, the script cycles through the collection
of messages and writes the data.

B. Serial Man-In-The-Middle

While the serial fuzzer script can inject various data into
SWIFT Tools by spoofing the W-USB adapter, it is only useful
in a local setup and cannot be used simultaneously with a W-
USB adapter. To mitigate the problem, a man-in-the-middle
(MITM) Python script has been developed. The MITM script
setup also utilizes com0com Null-modem emulator to create
virtual communication interfaces. Instead of using a pair of
virtual COM ports like what the serial fuzzer script required,
the MITM script communicates to two COM port interfaces,
which means two pairs of virtual COM ports need to be set
up. The SWIFT Tools communicates through a port that is
connected to the MITM script, in which the messages are then
passed to W-USB using another COM port (Figure 17).

The serial fuzzer only had the responsibility of reading
and sending response messages, but the MITM script reads
and forwards data to both sides. Currently, the MITM script
can relay the initial handshake and the device status up-
date messages from the W-USB side. During the forwarding
process, it can read all the data that is sent between the
SWIFT Tools and the W-USB adapter. This procedure can
also be accomplished using Serial Port Monitor; however, the
MITM tools’ features can expand to handle more data-related
operations. For instance, not only it can intercept the data, but
it would also be able to modify it before forwarding it to either
side. Also, the amount of data sent from the W-USB can be
overwhelming if many devices are communicating to it. The
MITM script would be able to filter out data to assist data
analysis.

VI. CONCLUSIONS

The over-the-air (OTA) and USB (serial) communication
protocols of Honeywell’s SWIFT system have been analyzed.
Further, Honeywell’s user-side software tool called “SWIFT

Tools” has been reverse engineered which has led to substan-
tial findings in SWIFT’s communication protocols. The serial
messages of multiple devices living on SWIFT’s mesh network
have been nearly fully decoded. Currently, only the pull
station’s RF transmissions have been captured and decoded
through a comparison of the OTA and USB protocols. All
work has been completed in the unencrypted mode of the
SWIFT network. With or without encryption, understanding
the communication protocol is essential to the vulnerability
analysis of the system.

Future goals for the analysis of the SWIFT system include:
the capturing and analysis of RF transmissions from other
devices on the mesh network, the decoding of serial messages
with different message types, an examination of the optional
encryption mode of the SWIFT system, additional ability to
inject and filter certain serial messages with the MITM script,
and an exploration on bypassing the physical demands of the
magnet in relation to the Gateway. With this information,
a successful red team style cyber-attack against the SWIFT
system is essential to substantiate any and all vulnerabilities.

REFERENCES

[1] Honeywell. Frequently-asked questions about swift. [On-
line]. Available: https://www.securityandfire.honeywell.com/notifier/
en-us/latesttopics/frequently-asked-questions-about-swift

[2] ——. Swift suite products page. [Online].
Available: https://www.securityandfire.honeywell.com/notifier/en-us/
browseallcategories/wireless/swift

[3] D. Crimmins. (2019, July) What is a fire alarm system? [Online].
Available: https://realpars.com/fire-alarm-system/

[4] Honeywell, NOTIFIER SWIFT intelligent wireless system Architectural
and Engineering Specifications. [Online]. Available: hhttps://www.
securityandfire.honeywell.com/en/\textasciitilde/media//Files/Notifier/
Engineering\%20Specs/SWIFT\ specification\ ENGLISH\ docx

[5] ——, NOTIFIER SWIFT intelligent wireless sys-
tem Architectural and Engineering Specifications.
[Online]. Available: https://fccid.io/AUBWFSAV/User-Manual/
Exhibit-D-Users-Manual-per-2-1033-b3-3767262.pdf

[6] V. K. Garg, “Chapter 23 - fourth generation systems and new wireless
technologies,” in Wireless Communications & Networking, ser. The
Morgan Kaufmann Series in Networking, V. K. Garg, Ed. Burlington:
Morgan Kaufmann, 2007, pp. 23–1–23–22. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123735805500570

[7] Semtech, SX1231 Transceiver Datasheet, June 2013. [Online].
Available: https://semtech.my.salesforce.com/sfc/p/\#E0000000JelG/a/
44000000MDkO/lWPNMeJClEs8Zvyu7AlDlKSyZqhYdVpQzFLVfUp.
EXs

[8] F. Vyacheslav. Null-modem emulator (com0com). [Online]. Available:
http://com0com.sourceforge.net/

