
Embedded System Cybersecurity Spring 2021-
CSAW-A Final Report

Connor Bushnell (Student)
Vertically Integrated Projects

Georgia Institute of Technology
cbushnell3@gatech.edu

Akshat Sistla (Student)
Vertically Integrated Projects

Georgia Institute of Technology
asistla6@gatech.edu

Cameron Newman (Student)
Vertically Integrated Projects

Georgia Institute of Technology
cnewman35@gatech.edu

Lisa Nute (Student)
Vertically Integrated Projects

Georgia Institute of Technology
lnute3@gatech.edu

Allen Stewart (Advisor)
Vertically Integrated Projects

Georgia Institute of Technology
allen.stewart@gtri.gatech.edu

Abstract—This paper provides the final report submission for
team CSAW-A in the Vertically Integrated Projects: Cyberse-
curity of Embedded Systems course. The team demonstrates
their ability to use open-source reverse engineering tools, as well
as details the creation of their own tools, for the purposes of
analyzing and solving challenges presented by past and future
CSAW ESC binaries.

I. INTRODUCTION

This report details the discoveries and accomplishments of
the CSAW-A team in their efforts to understand and apply
open source reverse engineering tools to the challenges from
the CSAW 2019 and 2020 ESC. It also details the creation and
application of each team member’s individually created tool,
which aim to overcome competition challenges not already
remedied by preexisting open-source tools.

II. OPEN-SOURCE TOOLS

A. pwntools

1) Overview: pwntools is a CTF framework written in
Python that allows the user to quickly develop and deploy
exploits [1]. It has many similar capabilities to other programs,
including binary debugging, analysis, instruction patching, and
I/O control, but enables the user to statically and dynamically
automate these tasks. When combined with tools like Ghidra
for binary decompliation, pwntools can be extremely useful
for dynamic program analysis.

2) Installation: Details for installation can be found on its
wiki page [2].

3) Usage: After installation, using pwntools is extremely
simple. To create a script, simply create a .py file and head
it with the following line:

from pwn import *

Pwntools is an ‘everything but the kitchen sink’ library, so
importing everything at once is not discouraged. Having access
to the entire library is necessary for combating whatever
roadblocks or additional analysis a challenge may demand.
Going forward, this section is meant to demonstrate a usage

of the tool, but as it is not yet functional for RISC-V, it will
likely look at a past challenge or a binary from a different
competition altogether.

B. Unicorn Engine
1) Overview: The Unicorn Engine is a CPU emulator that

can use multiple architectures [3]. This means that it can
take unreadable code such as assembly code or binary and
converts it to readable code such as Pharo, Crystal, Clojure,
Visual Basic, Perl, Rust, Haskell, Ruby, Python, Java, Go,
.NET, Delphi/Pascal and MSVC. In addition to this, it has
many features such as integration with Arm, Arm64 (Armv8),
M68K, Mips, Sparc, and X86. The best part of this is the fact
that the setup is native for Windows and Linux.

2) Installation: This can easily be setup in the following
ways:

• Mac
– $ Brew install unicorn
– To upgrade it just use the command
– $ brew update
– $ brew update unicorn

• Windows
– The zip file for the download can be found online

[4]
• Pip

– $ pip install unicorn
– To upgrade from an older version of Unicorn, do:
– $ pip install unicorn –upgrade
– Remember to stick “sudo” in front for root privilege

if necessary

C. hal-fuzz
1) Overview: Hal-fuzz, short for HALucinator: Firmware

Re-Hosting through Abstraction Layer Emulation, is a high-
level emulator for blob firmware that manually replaces
hardware-related library functions in the binary with high-level
python. It used to use QEMU and Avatar, but has recently
replaced the two with AFL-Unicorn [5].



2) Installation: Hal0fuzz can be downloaded by cloning
their repository and running their docker environment:

• Mac/Window (need Docker)
– $ git clone https://github.com/ucsb-seclab/hal-

fuzz.git
– $ cd hal-fuzz/
– $ docker build .
– $ docker run -it ¡imagehash¿ /bin/bash

• Ubuntu (need Python environment)
– $ git clone https://github.com/ucsb-seclab/hal-

fuzz.git
– $ cd hal-fuzz/
– $ mkvirtualenv -p /usr/bin/python3 halfuzz
– $ ./setup.sh

D. Ghidra

1) Overview: Ghidra is an open source reverse engineering
tool developed by the NSA [6]. It has a variety of tools to
analyze malware and malicious code across many platforms.
It is able to run executable formats and processor instruction
sets either with automation or user-controlled environments.
Capabilities include disassembling, assembling, graphing, and
scripting, and creating plug-ins with the open API.

2) Installation: To install Ghidra, download the zip file
(found here: https://ghidra-sre.org/) and extract using any
unzip program.

Ghidra is usually run in a GUI [7]:
1) Navigate to the directory where you installed Ghidra
2) Run ghidraRun.bat for Windows or ghidraRun for Lin-

ux/mac OS

III. PERSONAL TOOLS

A. Automated Hardware-Flasher

1) Overview: This tool enables the user to automatically
flash, connect to, and control the I/O of an associated CSAW
ESC device, with the additional functionality of being de-
ployable to a server to allow completely remote access to
the device [8]. Flashing each individual challenge between
device crashes proves to be a tedious task, and the motivation
behind the creation of this tool is to alleviate some of the
monotony, as well as to enable teams to work from remote
locations when they cannot all meet in person. At present, it
is focused on flashing the CSAW ESC 2020 hardware, but it
can be expanded to flash challenges to any firmware that can
be accessed through SEGGER’s JFlash tool [9].

The tool is primarily written in python for interfacing
between various tools, such has JLink Commander and, even-
tually, Ncat and GDB. It is able to take user input, dynamically
generate a .jlink file based on that input, flash the specified
hardware to the device without user intervention, then initiate
a JLink connection to the device. With the addition of python’s
nclib, the tool allows opportunity for the user to manually con-
nect to the target device’s WIFI network, then automatically
polls the device until it is ready to accept a connection [10].
This greatly enhances the number of successful first-attempt

connections and decreases overall time spent troubleshooting
them even on an unsuccessful first attempt.

2) Use: The program is simple but effective for greatly
decreasing the time and requirements to attempt a challenge.
For instance, all it takes to flash the ’breakfast’ challenge from
CSAW ESC 2020 to the board is to enter:

$ python ./autoflasher.py -f ./firmware/
breakfast.hex

Running the program flashes the firmware automatically,
allowing for the device to configure its on-board WIFI and
allowing the user to connect to it before proceeding. An
example of the .jlink file automatically generated and
executed by the python can be seen in Fig. 1.

Fig. 1. Example of a JLink Commander script generated by the auto-flasher.

This script specifies, on a line by line basis: the target
device, the target interface of said device (always JTAG), the
baud rate (speed), and the number of JTAG devices. It then
erases the currently flashed firmware, uploads the specified
firmware, resets the CPU, then begins the CPU at the initial
instruction location. The device is then ready to be accessed
and the challenge attempted, as shown by Fig. 2.

Fig. 2. Output of script once the firmware has been flashed and the device
connection completed.



To access the device, the tool utilizes the nclib library
to communicate over a TCP connection when it becomes
available. The tool repeatedly polls the device for a connection
for a specified number of failures (occasionally occur due to
hardware/firmware error when flashing). As shown in Fig. 3,
if a successful connection is made before the specified failure
count is reached, the challenge can be attempted.

Fig. 3. An example of the first connection attempt being a failure, but the
subsequent connection being successful and engaging the tool’s I/O

capabilities.

Upon failure to connect within the specified limit of at-
tempts, the hardware can be reset with the following com-
mand:

$ python ./autoflasher.py -f ./firmware/
breakfast.hex -r -nowifi

This can also be done to reset the hardware upon a failed
challenge attempt.

Once fully connected to the device, challenges can be
attempted in-tool through the pre-established TCP connection,
as demonstrated in Fig. 4.

Fig. 4. Completing the ‘flood‘ challenge with the tool.

Additional functionality includes the ability to automate
reading/writing from/to the challenge through the included
customizable challenge_script.py script. This allows
for users to control their own I/O, for challenges that require
monotonous input or require quick reading from device output
and subsequent input faster than human reaction.

3) Future Areas of Research:: Additional functionality is
envisioned for the tool which has not been achieved over
the course of this semester’s development period. These ex-
pansions include a transition from JLink Commander scripts
to the pylink library, which allows for remote debugging
capabilities, such as those offered through SEGGER’s GDB

server [11]. Testing on an ssh server for remote access has also
not been carried out, though should, in theory, be possible,
but may require expansion of applicability to Unix systems
(for purposes of connecting to WIFI and controlling JLink
connections).

B. Solution Generator

1) Overview: This tool allows the user to input several
different constraints into a designated area and processes all
of them to create a password that satisfies these constraints.
This is done through a Python back-end framework and then
will eventually include an HTML front-end to make the user
experience easier.

2) Setup: Currently, the setup is rather simple. All one
needs to do is download the file from the Github and once
this is done, one can run the code itself. The setup will be
even easier once the code is run once since because a link to
the website will be provided and the user experience will be
easier.

3) Use: The way one would currently use this product is
by taking cloning the Github repository. After this is done,
one can simply open up the Terminal or Command Prompt
(depending on the Operating System). Now the instructions to
run flask can be found on their website [12]. The name of the
file is ”front(underscore)end”. Once the file is run correctly, the
website can be found at the provided link in the terminal. This
will take you to a page where you can input all the constraints
necessary to you. At the bottom of this page, the code will be
provided and copied.

4) Future Areas of Research: The areas this project can
improve over the next couple semesters is for students to add
more functionality to the tool and improve the aesthetic. To
improve the functionality, students could add more constraints
that the tool can encompass or integrate the code with the
Terminal/ Command Prompt. To improve the aesthetic of the
tool, one could add a drop down menu to each constraint
or add better aesthetics to the web page itself. Doing more
research in these areas will help this tool grow.

C. Device Simulator

This tool is a simulator for the CSAW final round devices.
The simulation is expected to provide a virtual emulation of
the device to interact with and use to solve challenges remotely
without the restriction of having physical or simultaneous
access. During CSAW 2019, the first place team, Shellphish,
was able to simulate the RFID card reader using hal-fuzz, so
this tool will focus on this tool as a starting point.

1) Creating the Emulation: To prepare to create the emula-
tion, the following are needed : Docker, Hal-Fuzz, LibMatch,
JTAG, and the physical hardware.

With the hardware, JTAG is used to extract the firmware and
additional information, like memory layout, needed libraries,
toolchain, etc. To use JTAG, the connection pins need to
be recognized, firstly. After testing the connection, gather
the needed information, and extract the firmware from flash
memory [13].



Next using LibMatch, locate the libraries in the firmware
and create a database of known functions. The found functions
and their addresses should be returned along with any errors,
which can be resolved manually if needed [14].

Finally, using Hal-Fuzz, input the information obtained from
the previous tools : memory layout, list of functions, etc. Hal-
fuzz should create the emulation.

2) Future Areas of Research: The hardware was unavail-
able, so the firmware could not be extracted for the emulation.
So a future goal is to try getting the 2019 device to try this
process on, or getting a different device.

D. Code Vulnerability Detector

1) Overview: This tool is a code analysis tool for identify-
ing potential vulnerabilities in C code that can be exploited.
In C, the main vulnerabilities are memory mismanagement,
buffer overflows, and string manipulation. The tool is a Java
program that scans through a C program (as a text file) line
by line and highlights those where potential vulnerabilities lie.
It then notifies the user of the potential issue and provides a
suggestion for a more secure implementation.

2) Setup: To install the program, all you need to do is
download the file from the Github into a directory. Then, make
a copy of your C program and save it as a .txt file in the same
directory and replace the string on line 8 of the program with
the path to that file: File text = new File(”insert path here”)
Lastly, just run the code.

3) Use: One would use this tool to go over their code
to see if they use insecure functions or mismanage memory.
They will receive notes on the command prompt saying which
function or group of functions was used, why it is insecure,
and offer an alternate solution to mitigate the vulnerability. The
tool will also note if the number of memory allocations does
not match the number of times the user frees that memory.
With every run of the program, it will give a reminder not to
have insecure imports and that when working with files, one
must check if the file exists first, access it directly, and be sure
not to overwrite the file.

4) Limitations: As of now, the tool is limited when it
comes to checking the security of strings, files, and imports
efficiently. One idea for partial implementation would be to
cross-check against a known database of secure libraries.
However, there is no efficient or successful way to add
functionality to check strings or file paths, as they are unique
to the programmer. Future work could also include extending
the tool or creating a sibling tool to support other languages.
Likewise, re-structuring the tool to dynamically analyze code
as a user writes it instead of statically analyzing a text file is
another thought for the future.

REFERENCES

[1] “pwntools,” Available at https://github.com/Gallopsled/pwntools [Ac-
cessed 10 February 2021].

[2] “pwntools wiki,” Available at https://github.gatech.edu/Embedded-
System-Cyber-Security-VIP/ESCS-Hardware/wiki/Pwntools [Accessed
14 April 2021].

[3] “unic,” Available at https://www.unicorn-engine.org/ [Accessed 12 April
2021].

[4] “unicin,” Available at https://github.com/unicorn-
engine/unicorn/releases/download/1.0.2/unicorn-1.0.2-win64.zip
[Accessed 12 April 2021].

[5] “Halfuzz,” Available at https://github.com/ucsb-seclab/hal-fuzz [Ac-
cessed 10 February 2021].

[6] “ghidra,” Available at https://ghidra-sre.org/ [Accessed 10 April 2021].
[7] “ghidra installation guide,” Available at https://ghidra-

sre.org/InstallationGuide.html [Accessed 10 April 2021].
[8] “Auto firmware flasher,” Available at

https://github.gatech.edu/Embedded-System-Cyber-Security-VIP/ESCS-
Hardware/tree/master/CSAW/tools/auto flasher [Accessed 24 February
2021].

[9] “Jflash segger,” Available at https://www.segger.com/products/debug-
probes/j-link/tools/j-flash/about-j-flash/ [Accessed 10 February 2021].

[10] “nclib,” Available at https://pypi.org/project/nclib/ [Accessed 14 April
2021].

[11] “nclib,” Available at https://pylink.readthedocs.io/en/latest/ [Accessed 14
April 2021].

[12] “flask,” Available at https://flask.palletsprojects.com/en/1.1.x/cli/ [Ac-
cessed 11 April 2021].

[13] “Jtag,” Available at https://embeddedbits.org/2020-02-20-extracting-
firmware-from-devices-using-jtag/ [Accessed 10 February 2021].

[14] “Libmatch,” Available at https://github.com/subwire/libmatch.git [Ac-
cessed 10 February 2021].


